(六)网络与通信技术
- 1. 概述
- 2. 服务器托管网5G与光通讯
-
- 2.1 美国研究人员利用电磁拓扑绝缘体使5G频谱带宽翻倍
- 2.2 日本东京工业大学推出可接入5G网络的高频收发器
- 2.3 美国得克萨斯农工大学通过波束管理改进5G毫米波通信
- 2.4 联发科完成全球首次5G NTN卫星手机连线测试
- 2.5 澳大利亚国际射电天文学研究中心成果有望促进无线光通信应用
- 3. 6G技术
-
- 3.1 韩国三星电子举办首届6G论坛
- 3.2 日本大阪公立大学将磁性超结构材料作为6G的潜在关键技术
- 3.3 德韩研究人员将6G传输距离提高两倍
- 3.4 美国市场研究机构预测到2040年6G市场规模将达到3400亿美元
资料来自:《世界前沿技术发展报告2023》和网络
1. 概述
随着满足智慧交互、沉浸式拓展现实(Extended Reality, XR)全息通信、数字孪生等新兴技术的超高速率传输需求,新一代通信技术成为全球研究热点。伴随着5G在全球范围内的陆续应用,全球通信强国正开启对下一代网络技术6G的研发规划和技术探索。在各国政府的推动下,全球各主流运营商和科技公司纷纷投入开展6G技术与研究,目前已在频谱、空天地一体和芯片等技术领域取得了一定进展。
2. 5G与光通讯
5G技术的兴起与发展是一个承前启后,不断演进的过程。伴随通信技术的进步与互联网的发展,催生出许多新的服务和应用。在未来较长时期内,5G和宽带通信仍将是主流的通信方式,其性能将不断优化、应用场景将不断增多、商业模式将不断创新。
2.1 美国研究人员利用电磁拓扑绝缘体使5G频谱带宽翻倍
2022年5月,美国圣路易斯华盛顿大学(Washington University in St. Louis)、哥伦比亚大学(Columbia University in the City of New York)和纽约城市大学(TheCity University of New York)首次在集成芯片上使用电磁拓扑绝缘体,使5G频谱带宽翻倍。拓扑绝缘体是一种独特的物质状态,表面导电但整体不导电,可用于一系列技术,包括无线通信、雷达和量子信息处理。这种物质的非互易性确保了电磁波的单向传播,可用于全双工通信。这是一种允许以有效方式同时使用相同频率传输和接收数据的方法,可使频谱容量增加一倍。此外,如果波与介质内的任何畸形或不规则性接触,电磁拓扑绝缘体可防止反向散射而导致信号强度衰减。研究人员能够使用精确设计的晶体管开关时间调制在标准半导体集成电路上实现非互易性和拓扑绝缘特性,而无须特殊材料或极端条件。该研究有望用于新兴5G无线应用,如多天线全双工无线通信和多天线脉冲雷达。
2.2 日本东京工业大学推出可接入5G网络的高频收发器
2022年6月,日本东京工业大学推出一款高频收发器,可接入现有5G网络。研究人员采用Doherty放大器和数字预失真技术,来构建这种毫米波相控阵收发器。Doherty放大器于1936年开发,具有高功率效率且适用于高峰均比(Peak toAverage Power Ratio, PAPR)信号(如5G信号)传输场景。研究人员修改了传统的Doherty放大器设计并生产了一个双向放大器——同一电路既可以放大要发送的信号,也可以放大接收到的低噪声信号。同时,该收发器与晶圆级芯片级封装技术进行了协同设计,可以实现低插入损耗。在测试中,该收发器展现出较低的相邻信道泄露和传输误差,有望促进高频通信技术的发展。
2.3 美国得克萨斯农工大学通过波束管理改进5G毫米波通信
2022年7月,美国得克萨斯农工大学(Texas A&M University,TAMU)通过波束管理改进5G毫米波通信。当前的毫米波通信设备使用窄定向波束来传输信号,这意味着发射器和接收器必须不断调整其波束方向,但人体会阻挡通信设备到基站的信号传输,可能会影响通信质量。为解决上述问题,得克萨斯农工大学研究人员开发出两种解决方案。第一种解决方案名为BeamSurfer,通过持续对齐通信设备及基站,并采用不可见光线的反射来避开通信阻碍;另一种解决方案名为Terra,专为户外毫米波通信而优化,利用地面作为反射介质,并允许通信设备在不同基站间无缝切换。相关研究有望应用于未来的定向通信系统架构。
2.4 联发科完成全球首次5G NTN卫星手机连线测试
2022年8月,中国台湾地区联发科和德国罗德与施瓦茨公司(Rohde&Schwarz)合作完成了全球首次5G非地面网络(Non-Terrestrial Network, NTN)卫星手机连线测试,测试中智能手机直接通过卫星信号来实现上网功能。该项测试是在联发科实验室使用罗德与施瓦茨公司的测试设备完成的,模拟了600千米高度的真实低地轨道卫星群,其中每颗卫星都在轨道上以每小时近27000千米的速度快速移动。该测试芯片使用的是联发科搭载5G新空口非地面网络(5G New Radio Non-TerrestrialNetwork, 5G NR NTN)卫星网络功能的移动通信芯片,该芯片的设计符合国际标准组织第三代伙伴关系项目(3rd Generation Partnership Project, 3GPP)第17版5G标准规定的频谱定义功能。
2.5 澳大利亚国际射电天文学研究中心成果有望促进无线光通信应用
2022年11月,澳大利亚国际射电天文学研究中心(International Center for RadioAstronomy Research, ICRAR)研究人员的一项研究成果改善了无线光通信的稳定性,有望促进该技术的应用。目前广泛使用的无线电通信存在速率较慢的缺陷,无线光通信速率较快但因受大气湍流影响而不稳定。ICRAR研究人员开发出一种方法,以不间断的高速信号锁定快速移动的目标,能以每秒数百次的频率矫正大气湍流影响。这意味着先进的光学无线传输可以在更多环境中使用,从而减少对较慢无线电传输的依赖。目前,研究人员正在尝试将这项技术商业化,以拓展航天器通信、气象学、国防和灾害管理等多种应用。
3. 6G技术
随着5G商用的大规模部署,世界主要经济体已开启对6G通信技术的探索研究。6G具备更大信息容量、更低传输时延、更大设备连接数量、更高频谱效率和更高能量效率。6G网络的探索将会带来更多发展机遇,同时也会涉及更多新的关键技术和挑战。
3.1 韩国三星电子举办首届6G论坛
2022年5月,韩国三星电子举办首届6G论坛。该论坛以“下一代超连接体验”为主题,多位全球产业界与学术界的专家就6G空中接口和基于人工智能的6G智能网络进服务器托管网行了讨论,以求引领6G相关技术的研发及标准的制定。三星公司表示,6G将通过下一代超连接能力,为用户带来全新体验。在举行首届6G论坛之前,三星电子已经发布了《6G频谱白皮书》(6G Spectrum White Paper),勾画了“超带宽、超低时延、超智能和超空间化”的6G愿景。
3.2 日本大阪公立大学将磁性超结构材料作为6G的潜在关键技术
2022年6月,日本大阪公立大学研究人员在一种手性自旋孤子晶格(CSL)材料的磁性上层结构中检测到了前所未有的高频共振,该研究预示着承载CSL的手性螺旋磁体材料有望作为6G潜在关键技术。研究人员通过磁场来调制CSL材料的振荡频率,并使用专用微波电路检测磁共振信号。研究发现,CSL材料在基特尔模式共振(Kittel Mode Resonance)下的特性不同于传统铁磁材料,磁场减弱时其频率反而升高。这意味着CSL材料凭借其优异的结构可控性,可将谐振频率控制在高达亚太赫兹波段的宽带范围内,有助于6G高频通信技术的开发。
3.3 德韩研究人员将6G传输距离提高两倍
2022年9月,德国弗劳恩霍夫海因里希赫兹研究所和韩国LG电子的研究人员成功将6G数据的传输距离提升至320米,较该团队一年前创下的纪录提升了两倍。研究人员在155~175吉赫兹间的频率完成了这次户外数据传输实验,在信号发射端和接收端使用了放大器来增强信号。发射机放大器的输出从前序测试中的15分贝毫瓦提升至20分贝毫瓦。接收器配备的放大器可降低噪声,从而实现更清晰的信号接收。该研究有望成为6G技术进步的里程碑,推动6G技术实用化。
3.4 美国市场研究机构预测到2040年6G市场规模将达到3400亿美元
2022年10月,美国市场研究机构Market Research发布研究报告,对6G市场按组件、通信基础设施、设备使用、最终用途和地区进行了全面研究,并预测该市场将在2031—2040年间以58.1%的复合增长率增长,达到3400亿美元的规模。报告指出:按组件划分,基础设施/硬件将在预测期内引领市场;按通信基础设施划分,固定设施将主导市场;按设备使用情况划分,移动设备将引领市场;按最终用途划分,工业用途将占有最大份额。当前,全球近半数的6G专利申请来自中国。未来,亚太地区将在全球6G市场中拥有最大的收入份额。此外,Market Research公司指出,6G未来面临的主要挑战将是尺寸、成本和功耗。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: python获取当前路径包含的文件并根据选择进行查看
1、获取当前路径文件名。 ##(3)获取当前路径的文件名。 import os path = ‘./’ # 替换为你的路径 dir = os.listdir(path) # dir是目录下的全部文件 print(“当前目录的全部文件名称为::”,dir) fo…