非负矩阵分解(NMF)
sklearn.decomposition.NMF
找出两个非负矩阵,即包含所有非负元素(W,H)的矩阵,其乘积近似于非负矩阵x。这种因式分解可用于例如降维、源分离或主题提取。
主成分分析(PCA)
sklearn.decomposi服务器托管网tion.PCA
使用数据的奇异值分解将数据投影到较低维度空间的线性降维。在应用奇异值分解之前,输入数据居中,但不对每个特征进行缩放。
快速的独立分量分析算法(FastICA)
sklearn.decomposition.FastICA
一种快速的独立分量分析算法。
截断奇异值分解(TruncatedSVD)
sklearn.decomposition.TruncatedSVD
使用截断奇异值分解(又名LSA)进行降维。
这种变换器通过截断奇异值分解(SVD)来执行线性降维。与PCA相反,该估计器在计算奇异值分解之前不将数据居中。这意味着它可以有效地处理稀疏矩阵。
参考链接
sklearn.decomposition
服务器托管,服务器托管网北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: volatile源码解析【解决可见性(依据happened-befor)有序性(依据内存屏障)】
@TOC 转自 极客时间 解决内存可见性问服务器托管网题 vo服务器托管网latile实现原理-源码分析 服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net 机房租用,北京机房租用,IDC机房托管, http://www.fwqt…