LASSO
(L
east A
bsolute S
hrinkage and S
election O
perator)回归模型一般都是用英文缩写表示,
硬要翻译的话,可翻译为 最小绝对收缩和选择算子。
它是一种线性回归模型的扩展,其主要目标是解决高维数据中的特征选择和正则化问题。
1. 概述
在LASSO
中,通过使用L1正则化项,它能够在回归系数中引入稀疏性,
也就是允许某些系数在优化过程中缩减为零,从而实现特征的选择。
与岭回归不同的是,LASSO
的损失函数一般定义为:(L(w) = (y-wX)^2+lambdaparallel wparallel_1)
其中 (lambdaparallel wparallel_1),也就是 L1正则化项(岭回归中用的是 L2正则化项)。
模型训练的过程就是寻找让损失函数(L(w))最小的参数(w)。
也就等价于:(begin{align}
& arg min(y-wX)^2
& s.t. sum |w_{ij}|
这两个公式表示,在满足约束条件 (sum |w_{ij}| 的情况下,计算 ((y-wX)^2)的最小值。
2. 创建样本数据
相比于岭回归模型,LASSO
回归模型不仅对于共线性数据集友好,
对于高维数据的数据集,也有不错的性能表现。
它通过将不重要的特征的系数压缩为零,帮助我们选择最重要的特征,从而提高模型的预测准确性和可解释性。
下面我们模拟创建一些高维数据,创建一个特征数比样本数还多的样本数据集。
from sklearn.datasets import make_regression
X, y = make_regression(n_samples=80, n_features=100, noise=10)
这个数据集中,只有80
个样本,每个样本却有100
个特征,并且噪声也设置的很大(noise=10
)。
3. 模型训练
第一步,分割训练集和测试集。
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
用scikit-learn
中的LASSO
模型来训练:
from sklearn.linear_model import Lasso
# 初始化LASSO线性模型
reg = Lasso()
# 训练模型
reg.fit(X_train, y_train)
这里使用的 Lasso()
的默认参数来训练模型,它的主要参数包括:
-
alpha:正则化项系数。它控制了L1正则化项的强度,即对模型复杂度的惩罚。
alpha
越大,模型越简单,但过大的alpha
可能会导致模型欠拟合;alpha
越小,模型越复杂,但过小的alpha
可能会导致模型过拟合。默认值为1.0。 -
fit_intercept:布尔值,指定是否需要计算截距b值。如果设为
False
,则不计算b值。默认值为True。 -
normalize:布尔值。如果设为
True
,则在模型训练之前将数据归一化。默认值为False。 - precompute:布尔值,指定是否预先计算X的平方和。如果设为True,则在每次迭代之前计算X的平方和。默认值为False。
-
copy_X:布尔值,指定是否在训练过程中复制
X
。如果设为True
,则在训练过程中复制X
。默认值为True。 - max_iter:最大迭代次数。默认值为1000。
- tol:阈值,用于判断是否达到收敛条件。默认值为1e-4。
-
warm_start:布尔值,如果设为
True
,则使用前一次的解作为本次迭代的起始点。默认值为False。 -
positive:布尔值,如果设为
True
,则强制系数为正。默认值为False。 -
selection:用于在每次迭代中选择系数的算法(有“
cyclic
”和“random
”两种选择)。默认值为“cyclic
”,即循环选择。
最后验证模型的训练效果:
from sklearn import metrics
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred)
print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error))
服务器托管网
# 运行结果
均方误差:441.07830708712186
复相关系数:0.9838880665687711
中位数绝对误差:11.643348614829785
误差看上去不小,因为这次实际生成的样本,不仅数量小(80
件)且噪声大(noise=10
)。
3.1. 与岭回归模型比较
单独看LASSO
模型的训练结果,看不出其处理高维数据的优势。
同样用上面分割好的训练集和测试集,来看看岭回归模型的拟合效果。
from sklearn.linear_model import Ridge
# from sklearn.model_selection import train_test_split
mse, r2, m_error = 0.0, 0.0, 0.0
# 初始化岭回归线性模型
reg = Ridge()
# 训练模型
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred)
print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error))
# 运行结果
均方误差:6315.046844910431
复相关系数:0.7693207470296398
中位数绝对误差:60.65140692273637
对于高维数据,可以看出,岭回归模型的误差 远远大于 LASSO模型。
3.2. 与最小二乘法模型比较
同样用上面分割好的训练集和测试集,再来看看线性模型(最小二乘法)的拟合效果。
from sklearn.linear_model import LinearRegression
mse, r2, m_error = 0.0, 0.0, 0.0
# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred)
print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error))
# 运行结果
均方误差:5912.442445894787
复相关系数:0.7840272859181612
中位数绝对误差:62.89225服务器托管网147465376
可以看出,线性模型的训练效果和岭回归模型差不多,但是都远远不如LASSO模型。
4. 总结
总的来说,LASSO
回归模型是一种流行的线性回归扩展,具有一些显著的优势和劣势。
比如,在特征选择上,LASSO
通过将某些系数压缩为零,能够有效地进行特征选择,这在高维数据集中特别有用。
此外,LASSO
可以作为正则化工具,有助于防止过拟合。
不过,LASSO
会假设特征是线性相关的,对于非线性关系的数据,效果可能不佳。
而且,如果数据存在复杂模式或噪声,LASSO
可能会过度拟合这些模式。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
相关推荐: 行业追踪,2023-07-05,涨多了就调整很正常,小金属受管制影响逆市走强
自动复盘 2023-07-05 成交额超过 100 亿 排名靠前,macd柱由绿转红 成交量要大于均线 有必要给每个行业加一个上级的归类,这样更能体现主流方向 rps 有时候比较滞后,但不少是欲杨先抑, 应该持续跟踪,等 macd 反转时参与 一线红:第一次买…