@article{zhao2023ddfm,
title={DDFM: denoising diffusion model for multi-modality image fusion},
author={Zhao, Zixiang and Bai, Haowen and Zhu, Yuanzhi and Zhang, Jiangshe and Xu, Shuang and Zhang, Yulun and Zhang, Kai and Meng, Deyu and Timofte, Radu and Van Gool, Luc},
journal={arXiv preprint arXiv:2303.06840},
year={2023}
}
论文级别:ICCV 2023
影响因子:-
[论文下载地址]
[代码下载地址]
文章目录
- 论文解读
-
- 关键词
- 核心思想
- 网络结构
- 损失函数
- 数据集
- 训练设置
- 实验
-
- 评价指标
- Baseline
- 实验结果
- 传送门
-
- 图像融合相关论文阅读笔记
- 图像融合论文baseline总结
- 其他论文
- 其他总结
- ✨精品文章总结
论文解读
这篇文章和CDDFuse是同一个团队的成果。
作者利用扩散概率模型DDPM(denoising diffusion probabilistic model )用在多模态图像融合任务中,提出了去噪扩散图像融合模型(Denoising Diffusion image Fusion Model (DDFM)),融合任务被定义为了在DDPM采样网络下的条件生成问题,并进一步划分为了:无条件生成和最大似然这两个子问题。
关键词
扩散概率模型,多模态图像融合
核心思想
以后再填坑,公式推导太多了,哭泣.gif
参考链接
[什么是图像融合?(一看就通,通俗易懂)]
网络结构
作者提出的网络结构如下所示。
损失函数
数据集
- TNO, RoadScene, MSRS, M3FD
图像融合数据集链接
[图像融合常用数据集整理]
训练设置
实验
评价指标
- EN
- SD
- MI
- VIF
- Qabf
- SSIM
参考资料
[图像融合定量指标分析]
Baseline
- FusionGAN, GANMcC, TarDAL, UMFusion, U2Fusion, RFNet, DeFusion
✨✨✨参考资料
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨
实验结果
更多实验结果及分析可以查看原文:
[论文下载地址]
服务器托管网传送门
图像融合相关论文阅读笔记
[Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models]
[Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion]
[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
[DenseFuse: A fusion approach to infrared and visible images]
[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]
综述[Visible and Infrared Image Fusion Using Deep Learning]
图像融合论文baseline总结
[图像融合论文baseline及其网络模型]
其他论文
[3D目标检测综述服务器托管网:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
其他总结
[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨精品文章总结
✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]
如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net