论文:
Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, Weining Qian. Optim服务器托管网al Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models. CIKM 2023
背景
近年来,在图像生成领域,对于扩散模型的成功我们有目共睹。与基于 GAN 的生成模型不同,扩散模型需要多次调用模型进行前向推理,经过多次迭代,才能得到清晰完整的图像。扩散模型在大幅度提升生成效果的同时,也因其迭代式的生成过程面临严重的计算效率问题。我们希望改进扩散模型的生成过程,减少迭代步数,提升生成速度。
加速算法的统一分析
这其实揭示了调度机设计的本质——在由模型输出值和初始高斯噪声张成的向量空间中求解下一步的。不同的调度机仅在迭代公式的系数上存在不同,我们决定设计一个新的调度机,将迭代公式中的系数设计成可训练的,使其对应的近似计算过程更加精确。
算法架构
此外,为了进一步降低这个算法的误差,我们还对 {t(1),…,t(n)} 进行了调整。具体地,设计了一个启发式的路径规划算法,分为以下三部分:
其中算法 1 利用贪心策略搜索下一步的,算法 2 调用算法 1 搜索在误差上届 D下是否存在这样的路径,算法 3 调用算法 2 搜索最低的误差上界。整个路径规划算法可以使 n 步中的最大误差最小。
实验结果
我们在主流的 Stable Diffusion 1.4 和 Stable Diffusion 2.1 上进行了实验,测试了包括 OLSS 和 OLSS-P(无路径规划版本)在内的 8 个调度机算法,使用 5 步、10 步、20 步的算法与 100 步、1000 步的算法比较,FID 结果(越小越好)如下表所示:
我们可以明显看出,在同等步数下,OLSS 比其他调度机算法能够实现更高的图像质量,这证明了 OLSS 方法的巨大优越性。此外,从以下例子中我们也可以明显看出 OLSS 在极少步数下的效果:
目前 OLSS 已经在 EasyNLP(https://github.com/alibaba/EasyNLP/tree/master/diffusion/olss_scheduler)开源。欢迎广大用户试用!
参考文献
● Bingyan Liu, Weifeng Lin, Zhongjie Duan, Chengyu Wang, Ziheng Wu, Zipeng Zhang, Kui Jia, Lianwen Jin, Cen Chen, Jun Huang. Rapid Diffusion: Building Domain-Specific Text-to-Image Synthesizers with Fast Inference Speed. In the 61st Annual Meeting of the Association for Computational Linguistics (Industry Track).
● Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang, Wei Lin. EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing. In the 2022 Conference on Empirical Methods in Natural Language Processing (Demo Track).
● Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion Implicit Models. In International服务器托管网 Conference on Learning Representations.
● Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. 2022. Elucidating the design space of diffusion-based generative models. Advances in Neural Information Processing Systems 35 (2022), 26565–26577.
● Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2021. Pseudo Numerical Methods for Diffusion Models on Manifolds. In International Conference on Learning Representations.
● Qinsheng Zhang and Yongxin Chen. 2022. Fast Sampling of Diffusion Models with Exponential Integrator. In The Eleventh International Conference on Learning Representations.
● Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information Processing Systems 35 (2022), 5775–5787.
● Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022. Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095
论文信息
论文标题:Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models
论文作者:段忠杰、汪诚愚、陈岑、黄俊、钱卫宁
点击立即免费试用云产品 开启云上实践之旅!
原文链接
本文为阿里云原创内容,未经允许不得转载。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net