MLLM引导的图像编辑技术报告
引言
随着视觉设计工具和视觉语言模型的广泛应用,多媒体行业对它们的需求日益增长。为了提高可访问性和控制性,多媒体行业越来越多地采用基于文本或指令的图像编辑技术。这些技术使用自然语言命令,而不是传统的区域掩码或详细描述,使得图像操作更加灵活和可控。然而,基于指令的方法通常提供简短的指导,可能对现有模型来说难以完全捕捉和执行。此外,扩散模型,以其能够创建逼真图像的能力,在图像编辑领域需求量很大。
MLLM引导的图像编服务器托管网辑(MGIE)
MLLM和扩散模型
扩散模型通过交换潜在的多模态映射来执行视觉操作,反映输入目标字幕的更改,并可以使用引导掩码来编辑图像的特定区域。而大型语言模型(LLM)在文本摘要、机器翻译、文本生成服务器托管网和回答问题等多样化语言任务中取得了显著进展。基于LLM,多模态大型语言模型(MLLM)可以使用图像作为自然输入并提供适当的视觉感知响应。
MGIE架构和方法
MGIE框架包含一个扩散模型和一个MLLM模型。扩散模型通过端到端训练来执行图像编辑,而MLLM框架学习预测精确的表达性指令。MGIE框架利用固有的视觉推导来处理模糊的人类命令,从而实现逼真的图像编辑。
简洁表达指令
MGIE框架使用文本提示作为主要语言输入,并从图像中提取详细说明。然后,它使用预训练的摘要器来获得简洁的叙述,并将简洁而明确的指导视为表达性指令。
基于潜在想象的图像编辑
MGIE框架采用编辑头将图像指令转换为实际的视觉指导。编辑头是一个序列到序列模型,它帮助将来自MLLM的顺序视觉令牌映射到有意义的潜在语义作为其编辑指导。
MGIE的学习
MGIE框架使用IPr2Pr数据集作为其主要的预训练数据,包含超过100万CLIP过滤的数据,其中包含从GPT-3模型中提取的指令,以及一个Prompt-to-Prompt模型来合成图像。
MGIE结果和评估
MGIE框架在Photoshop风格修改和局部优化方面表现出色,因为它可以学习领域相关的指导,使扩散模型能够展示出具体的编辑场景。此外,由于视觉感知指导与预期的编辑目标更加一致,MGIE框架在性能上持续优于LGIE。
结论
MGIE或MLLM引导的图像编辑是一个受MLLM启发的学习,旨在评估多模态大型语言模型,并分析它们如何通过文本或指导指令支持编辑,同时学习如何提供明确指导并推导表达性指令。MGIE编辑模型捕捉视觉信息,并通过端到端训练执行编辑或操作。与模糊和简短的指导相比,MGIE框架产生明确的视觉感知指令,从而实现合理的图像编辑。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
处理 js 资源 Webpack 对 js 处理是有限的,只能编译 js 中 ES 模块化语法,不能编译其他语法,导致 js 不能在 IE 等浏览器运行,所以我们希望做一些兼容性处理。 其次开发中,团队对代码格式是有严格要求的,我们不能由肉眼去检测代码格式,需…