作者:vivo 互联网服务器团队- Jiang Zhu
本文以线上诡异问题为切入点,通过对比JDK ThreadLocal和Netty FastThreadLocal实现逻辑以及优缺点,并深入解读源码,由浅入深理解Netty FastThreadLocal。
一、前言
最近在学习Netty相关的知识,在看到Netty FastThreadLocal章节中,回想起一起线上诡异问题。
问题描述:外销业务获取用户信息判断是否支持https场景下,获取的用户信息有时候竟然是错乱的。
问题分析:使用ThreadLocal保存用户信息时,未能及时进行remove()操作,而Tomcat工作线程是基于线程池的,会出现线程重用情况,所以获取的用户信息可能是之前线程遗留下来的。
问题修复:ThreadLocal使用完之后及时remove()、ThreadLocal使用之前也进行remove()双重保险操作。
接下来,我们继续深入了解下JDK ThreadLocal和Netty FastThreadLocal吧。
二、JDK ThreadLocal介绍
ThreadLocal是JDK提供的一个方便对象在本线程内不同方法中传递、获取的类。用它定义的变量,仅在本线程中可见,不受其他线程的影响,与其他线程相互隔离。
那具体是如何实现的呢?如图1所示,每个线程都会有个ThreadLocalMap实例变量,其采用懒加载的方式进行创建,当线程第一次访问此变量时才会去创建。
ThreadLocalMap使用线性探测法存储ThreadLocal对象及其维护的数据,具体操作逻辑如下:
假设有一个新的ThreadLocal对象,通过hash计算它应存储的位置下标为x。
此时发现下标x对应位置已经存储了其他的ThreadLocal对象,则它会往后寻找,步长为1,下标变更为x+1。
接下来发现下标x+1对应位置也已经存储了其他的ThreadLocal对象,同理则它会继续往后寻找,下标变更为x+2。
直到寻找到下标为x+3时发现是空闲的,然后将该ThreadLocal对象及其维护的数据构建一个entry对象存储在x+3位置。
在ThreadLocalMap中数据很多的情况下,很容易出现hash冲突,解决冲突需要不断的向下遍历,该操作的时间复杂度为O(n),效率较低。
图1
从下面的代码中可以看出:
Entry 的 key 是弱引用,value 是强引用。在 JVM 垃圾回收时,只要发现弱引用的对象,不管内存是否充足,都会被回收。
但是当 ThreadLocal 不再使用被 GC 回收后,ThreadLocalMap 中可能出现 Entry 的 key 为 NULL,那么 Entry 的 value 一直会强引用数据而得不到释放,只能等待线程销毁,从而造成内存泄漏。
static class ThreadLocalMap {
// 弱引用,在资源紧张的时候可以回收部分不再引用的ThreadLocal变量
static class Entry extends WeakReferenceThreadLocal>> {
// 当前ThreadLocal对象所维护的数据
Object value;
Entry(ThreadLocal> k, Object v) {
super(k);
value = v;
}
}
// 省略其他代码
}
综上所述,既然JDK提供的ThreadLocal可能存在效率较低和内存泄漏的问题,为啥不做相应的优化和改造呢?
1.从ThreadLocal类注释看,它是JDK1.2版本引入的,早期可能不太关注程序的性能。
2.大部分多线程场景下,线程中的ThreadLocal变量较少,因此出现hash冲突的概率相对较小,及时偶尔出现了hash冲突,对程序的性能影响也相对较小。
3.对于内存泄漏问题,ThreadLocal本身已经做了一定的保护措施。作为使用者,在线程中某个ThreadLocal对象不再使用或出现异常时,立即调用 remove() 方法删除 Entry 对象,养成良好的编码习惯。
三、Netty FastThreadLocal介绍
FastThreadLocal是Netty中对JDK提供的ThreadLocal优化改造版本,从名称上来看,它应该比ThreadLocal更快了,以应对Netty处理并发量大、数据吞吐量大的场景。
那具体是如何实现的呢?如图2所示,每个线程都会有个InternalThreadLocalMap实例变量。
每个FastThreadLocal实例创建时,都会采用AtomicInteger保证顺序递增生成一个不重复的下标index,它是该FastThreadLocal对象维护的数据应该存储的位置。
读写数据的时候通过FastThreadLocal的下标 index 直接定位到该FastThreadLocal的位置,时间复杂度为 O(1),效率较高。
如果该下标index递增到特别大,InternalThreadLocalMap维护的数组也会特别大,所以FastThreadLocal是通过空间换时间来提升读写性能的。
图2
四、Netty FastThreadLocal源码分析
4.1 构造方法
public class FastThreadLocal {
// FastThreadLocal中的index是记录了该它维护的数据应该存储的位置
// InternalThreadLocalMap数组中的下标, 它是在构造函数中确定的
private final int index;
public InternalThreadLocal() {
index = InternalThreadLocalMap.nextVariableIndex();
}
// 省略其他代码
}
public final class InternalThreadLocalMap extends UnpaddedInternalThreadLocalMap {
// 自增索引, ⽤于计算下次存储到Object数组中的位置
private static final AtomicInteger nextIndex = new AtomicInteger();
private static final int ARRAY_LIST_CAPACITY_MAX_SIZE = Integer.MAX_VALUE - 8;
public static int nextVariableIndex() {
int index = nextIndex.getAndI服务器托管网ncrement();
if (index >= ARRAY_LIST_CAPACITY_MAX_SIZE || index 0) {
nextIndex.set(ARRAY_LIST_CAPACITY_MAX_SIZE);
throw new IllegalStateException("too many thread-local indexed variables");
}
return index;
}
// 省略其他代码
}
上面这两段代码在Netty FastThreadLocal介绍中已经讲解过,这边就不再重复介绍了。
4.2 get 方法
public class FastThreadLocalV> {
// FastThreadLocal中的index是记录了该它维护的数据应该存储的位置
private final int index;
public final V get() {
// 获取当前线程的InternalThreadLocalMap
InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get();
// 根据当前线程的index从InternalThreadLocalMap中获取其绑定的数据
Object v = threadLocalMap.indexedVariable(index);
// 如果获取当前线程绑定的数据不为缺省值UNSET,则直接返回;否则进行初始化
if (v != InternalThreadLocalMap.UNSET) {
return (V) v;
}
return initialize(threadLocalMap);
}
// 省略其他代码
}
public final class InternalThreadLocalMap extends UnpaddedInternalThreadLocalMap {
private static final int INDEXED_VARIABLE_TABLE_INITIAL_SIZE = 32;
// 未赋值的Object变量(缺省值),当⼀个与线程绑定的值被删除之后,会被设置为UNSET
public static final Object UNSET = new Object();
// 存储绑定到当前线程的数据的数组
private Object[] indexedVariables;
// slowThreadLocalMap为JDK ThreadLocal存储InternalThreadLocalMap
private static final ThreadLocal slowThreadLocalMap =
new ThreadLocal();
// 从绑定到当前线程的数据的数组中取出index位置的元素
public Object indexedVariable(int index) {
Object[] lookup = indexedVariables;
return index
}
public static InternalThreadLocalMap get() {
Thread thread = Thread.currentThread();
// 判断当前线程是否是FastThreadLocalThread类型
if (thread instanceof FastThreadLocalThread) {
return fastGet((FastThreadLocalThread) thread);
} else {
return slowGet();
}
}
private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {
// 直接获取当前线程的InternalThreadLocalMap
InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();
// 如果当前线程的InternalThreadLocalMap还未创建,则创建并赋值
if (threadLocalMap == null) {
thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());
}
return threadLocalMap;
}
private static InternalThreadLocalMap slowGet() {
// 使用JDK ThreadLocal获取InternalThreadLocalMap
InternalThreadLocalMap ret = slowThreadLocalMap.get();
if (ret == null) {
ret = new InternalThreadLocalMap();
slowThreadLocalMap.set(ret);
}
return ret;
}
private InternalThreadLocalMap() {
indexedVariables = newIndexedVariableTable();
}
// 初始化一个32位长度的Object数组,并将其元素全部设置为缺省值UNSET
private static Object[] newIndexedVariableTable() {
Object[] array = new Object[INDEXED_VARIABLE_TABLE_INITIAL_SIZE];
Arrays.fill(array, UNSET);
return array;
}
// 省略其他代码
}
源码中get()方法主要分为下面3个步骤处理:
通过InternalThreadLocalMap.get()方法获取当前线程的InternalThreadLocalMap。
根据当前线程的index从InternalThreadLocalMap中获取其绑定的数据。
如果不是缺省值UNSET,直接返回;如果是缺省值,则执行initialize方法进行初始化。
下面我们继续分析一下
InternalThreadLocalMap.get()方法的实现逻辑。
首先判断当前线程是否是FastThreadLocalThread类型,如果是FastThreadLocalThread
类型则直接使用fastGet方法获取InternalThreadLocalMap,如果不是FastThreadLocalThread类型则使用slowGet方法获取InternalThreadLocalM服务器托管网ap兜底处理。
兜底处理中的slowGet方法会退化成JDK原生的ThreadLocal获取InternalThreadLocalMap。
获取InternalThreadLocalMap时,如果为null,则会直接创建一个InternalThreadLocalMap返回。其创建过过程中初始化一个32位长度的Object数组,并将其元素全部设置为缺省值UNSET。
4.3 set 方法
public class FastThreadLocalV> {
// FastThreadLocal初始化时variablesToRemoveIndex被赋值为0
private static final int variablesToRemoveIndex = InternalThreadLocalMap.nextVariableIndex();
public final void set(V value) {
// 判断value值是否是未赋值的Object变量(缺省值)
if (value != InternalThreadLocalMap.UNSET) {
// 获取当前线程对应的InternalThreadLocalMap
InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get();
// 将InternalThreadLocalMap中数据替换为新的value
// 并将FastThreadLocal对象保存到待清理的Set中
setKnownNotUnset(threadLocalMap, value);
} else {
remove();
}
}
private void setKnownNotUnset(InternalThreadLocalMap threadLocalMap, V value) {
// 将InternalThreadLocalMap中数据替换为新的value
if (threadLocalMap.setIndexedVariable(index, value)) {
// 并将当前的FastThreadLocal对象保存到待清理的Set中
addToVariablesToRemove(threadLocalMap, this);
}
}
private static void addToVariablesToRemove(InternalThreadLocalMap threadLocalMap, FastThreadLocal> variable) {
// 取下标index为0的数据,用于存储待清理的FastThreadLocal对象Set集合中
Object v = threadLocalMap.indexedVariable(variablesToRemoveIndex);
Set> variablesToRemove;
if (v == InternalThreadLocalMap.UNSET || v == null) {
// 下标index为0的数据为空,则创建FastThreadLocal对象Set集合
variablesToRemove = Collections.newSetFromMap(new IdentityHashMap, Boolean>());
// 将InternalThreadLocalMap中下标为0的数据,设置成FastThreadLocal对象Set集合
threadLocalMap.setIndexedVariable(variablesToRemoveIndex, variablesToRemove);
} else {
variablesToRemove = (Set>) v;
}
// 将FastThreadLocal对象保存到待清理的Set中
variablesToRemove.add(variable);
}
// 省略其他代码
}
public final class InternalThreadLocalMap extends UnpaddedInternalThreadLocalMap {
// 未赋值的Object变量(缺省值),当⼀个与线程绑定的值被删除之后,会被设置为UNSET
public static final Object UNSET = new Object();
// 存储绑定到当前线程的数据的数组
private Object[] indexedVariables;
// 绑定到当前线程的数据的数组能再次采用x2扩容的最大量
private static final int ARRAY_LIST_CAPACITY_EXPAND_THRESHOLD = 1 30;
private static final int ARRAY_LIST_CAPACITY_MAX_SIZE = Integer.MAX_VALUE - 8;
// 将InternalThreadLocalMap中数据替换为新的value
public boolean setIndexedVariable(int index, Object value) {
Object[] lookup = indexedVariables;
if (index
Object oldValue = lookup[index];
// 直接将数组 index 位置设置为 value,时间复杂度为 O(1)
lookup[index] = value;
return oldValue == UNSET;
} else { // 绑定到当前线程的数据的数组需要扩容,则扩容数组并数组设置新value
expandIndexedVariableTableAndSet(index, value);
return true;
}
}
private void expandIndexedVariableTableAndSet(int index, Object value) {
Object[] oldArray = indexedVariables;
final int oldCapacity = oldArray.length;
int newCapacity;
// 判断可进行x2方式进行扩容
if (index
newCapacity = index;
// 位操作,提升扩容效率
newCapacity |= newCapacity >>> 1;
newCapacity |= newCapacity >>> 2;
newCapacity |= newCapacity >>> 4;
newCapacity |= newCapacity >>> 8;
newCapacity |= newCapacity >>> 16;
newCapacity ++;
} else { // 不支持x2方式扩容,则设置绑定到当前线程的数据的数组容量为最大值
newCapacity = ARRAY_LIST_CAPACITY_MAX_SIZE;
}
// 按扩容后的大小创建新数组,并将老数组数据copy到新数组
Object[] newArray = Arrays.copyOf(oldArray, newCapacity);
// 新数组扩容后的部分赋UNSET缺省值
Arrays.fill(newArray, oldCapacity, newArray.length, UNSET);
// 新数组的index位置替换成新的value
newArray[index] = value;
// 绑定到当前线程的数据的数组用新数组替换
indexedVariables = newArray;
}
// 省略其他代码
}
源码中set()方法主要分为下面3个步骤处理:
判断value是否是缺省值UNSET,如果value不等于缺省值,则会通过InternalThreadLocalMap.get()方法获取当前线程的InternalThreadLocalMap,具体实现3.2小节中get()方法已做讲解。
通过FastThreadLocal中的setKnownNotUnset()方法将InternalThreadLocalMap中数据替换为新的value,并将当前的FastThreadLocal对象保存到待清理的Set中。
如果等于缺省值UNSET或null(else的逻辑),会调用remove()方法,remove()具体见后面的代码分析。
接下来我们看下
InternalThreadLocalMap.setIndexedVariable方法的实现逻辑。
判断index是否超出存储绑定到当前线程的数据的数组indexedVariables的长度,如果没有超出,则获取index位置的数据,并将该数组index位置数据设置新value。
如果超出了,绑定到当前线程的数据的数组需要扩容,则扩容该数组并将它index位置的数据设置新value。
扩容数组以index 为基准进行扩容,将数组扩容后的容量向上取整为 2 的次幂。然后将原数组内容拷贝到新的数组中,空余部分填充缺省值UNSET,最终把新数组赋值给 indexedVariables。
下面我们再继续看下
FastThreadLocal.addToVariablesToRemove方法的实现逻辑。
1.取下标index为0的数据(用于存储待清理的FastThreadLocal对象Set集合中),如果该数据是缺省值UNSET或null,则会创建FastThreadLocal对象Set集合,并将该Set集合填充到下标index为0的数组位置。
2.如果该数据不是缺省值UNSET,说明Set集合已金被填充,直接强转获取该Set集合。
3.最后将FastThreadLocal对象保存到待清理的Set集合中。
4.4 remove、removeAll方法
public class FastThreadLocalV> {
// FastThreadLocal初始化时variablesToRemoveIndex被赋值为0
private static final int variablesToRemoveIndex = InternalThreadLocalMap.nextVariableIndex();
public final void remove() {
// 获取当前线程的InternalThreadLocalMap
// 删除当前的FastThreadLocal对象及其维护的数据
remove(InternalThreadLocalMap.getIfSet());
}
public final void remove(InternalThreadLocalMap threadLocalMap) {
if (threadLocalMap == null) {
return;
}
// 根据当前线程的index,并将该数组下标index位置对应的值设置为缺省值UNSET
Object v = threadLocalMap.removeIndexedVariable(index);
// 存储待清理的FastThreadLocal对象Set集合中删除当前FastThreadLocal对象
removeFromVariablesToRemove(threadLocalMap, this);
if (v != InternalThreadLocalMap.UNSET) {
try {
// 空方法,用户可以继承实现
onRemoval((V) v);
} catch (Exception e) {
PlatformDependent.throwException(e);
}
}
}
public static void removeAll() {
InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.getIfSet();
if (threadLocalMap == null) {
return;
}
try {
// 取下标index为0的数据,用于存储待清理的FastThreadLocal对象Set集合中
Object v = threadLocalMap.indexedVariable(variablesToRemoveIndex);
if (v != null && v != InternalThreadLocalMap.UNSET) {
"unchecked") (
Set> variablesToRemove = (Set>) v;
// 遍历所有的FastThreadLocal对象并删除它们以及它们维护的数据
FastThreadLocal>[] variablesToRemoveArray =
variablesToRemove.toArray(new FastThreadLocal[0]);
for (FastThreadLocal> tlv: variablesToRemoveArray) {
tlv.remove(threadLocalMap);
}
}
} finally {
// 删除InternalThreadLocalMap中threadLocalMap和slowThreadLocalMap数据
InternalThreadLocalMap.remove();
}
}
private static void removeFromVariablesToRemove(
InternalThreadLocalMap threadLocalMap, FastThreadLocal> variable) {
// 取下标index为0的数据,用于存储待清理的FastThreadLocal对象Set集合中
Object v = threadLocalMap.indexedVariable(variablesToRemoveIndex);
if (v == InternalThreadLocalMap.UNSET || v == null) {
return;
}
"unchecked") (
// 存储待清理的FastThreadLocal对象Set集合中删除该FastThreadLocal对象
Set> variablesToRemove = (Set>) v;
variablesToRemove.remove(variable);
}
// 省略其他代码
}
public final class InternalThreadLocalMap extends UnpaddedInternalThreadLocalMap {
// 根据当前线程获取InternalThreadLocalMap
public static InternalThreadLocalMap getIfSet() {
Thread thread = Thread.currentThread();
if (thread instanceof FastThreadLocalThread) {
return ((FastThreadLocalThread) thread).threadLocalMap();
}
return slowThreadLocalMap.get();
}
// 数组下标index位置对应的值设置为缺省值UNSET
public Object removeIndexedVariable(int index) {
Object[] lookup = indexedVariables;
if (index
Object v = lookup[index];
lookup[index] = UNSET;
return v;
} else {
return UNSET;
}
}
// 删除threadLocalMap和slowThreadLocalMap数据
public static void remove() {
Thread thread = Thread.currentThread();
if (thread instanceof FastThreadLocalThread) {
((FastThreadLocalThread) thread).setThreadLocalMap(null);
} else {
slowThreadLocalMap.remove();
}
}
// 省略其他代码
}
源码中remove()方法主要分为下面2个步骤处理:
通过InternalThreadLocalMap.getIfSet()获取当前线程的InternalThreadLocalMap。具体和3.2小节get()方法里面获取当前线程的InternalThreadLocalMap相似,这里就不再重复介绍了。
删除当前的FastThreadLocal对象及其维护的数据。
源码中removeAll()方法主要分为下面3个步骤处理:
通过InternalThreadLocalMap.getIfSet()获取当前线程的InternalThreadLocalMap。
取下标index为0的数据(用于存储待清理的FastThreadLocal对象Set集合),然后遍历所有的FastThreadLocal对象并删除它们以及它们维护的数据。
最后会将InternalThreadLocalMap本身从线程中移除。
五、总结
那么使用ThreadLocal时最佳实践又如何呢?
每次使用完ThreadLocal实例,在线程运行结束之前的finally代码块中主动调用它的remove()方法,清除Entry中的数据,避免操作不当导致的内存泄漏。
使⽤Netty的FastThreadLocal一定比JDK原生的ThreadLocal更快吗?
不⼀定。当线程是FastThreadLocalThread,则添加、获取FastThreadLocal所维护数据的时间复杂度是 O(1),⽽使⽤ThreadLocal可能存在哈希冲突,相对来说使⽤FastThreadLocal更⾼效。但如果是普通线程则可能更慢。
使⽤FastThreadLocal有哪些优点?
正如文章开头介绍JDK原生ThreadLocal存在的缺点,FastThreadLocal全部优化了,它更⾼效、而且如果使⽤的是FastThreadLocal,它会在任务执⾏完成后主动调⽤removeAll⽅法清除数据,避免潜在的内存泄露。
END
猜你喜欢
-
记一次Redis Cluster Pipeline导致的死锁问题
-
MySQL到TiDB:Hive Metastore横向扩展之路
-
开源框架中的责任链模式实践
本文分享自微信公众号 – vivo互联网技术(vivoVMIC)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
https://buuoj.cn/challenges#[%E6%9E%81%E5%AE%A2%E5%A4%A7%E6%8C%91%E6%88%98%202019]FinalSQL 测起来有点感觉过滤很奇怪 case when mid union if ‘ a…