一、上章原理回顾
具体过程:
(1)首先我们要先训练出较大模型既teacher模型。(在图中没有出现)
(2)再对teacher模型进行蒸馏,此时我们已经有一个训练好的teacher模型,所以我们能很容易知道teacher模型输入特征x之后,预测出来的结果teacher_preds标签。
(3)此时,求到老师预测结果之后,我们需要求解学生在训练过程中的每一次结果student_preds标签。
(4)先求hard_loss,也就是学生模型的预测student_preds与真实标签targets之间的损失。
(5)再求soft_loss,也就是学生模型的预测student_preds与教师模型teacher_preds的预测之间的损失。
(6)求出hard_loss与soft_loss之后,求和总loss=a*hard_loss + (1-a)soft_loss,a是一个自己设置的权重参数,我在代码中设置为a=0.3。
(7)最后反向传播继续迭代。
二、代码实现
1、数据集
数据集采用的是手写数字的数据集mnist数据集,如果没有下载,代码部分中会进行下载,只需要把download改成True,然后就会保存在当前目录中。该数据集将其分成80%的训练集,20%的测试集,最后返回train_dataset和test_datatset。
class MyDataset(Dataset):
def __init__(self,opt):
self.opt = opt
def MyData(self):
## mnist数据集下载0
mnist = datasets.MNIST(
root='../datasets/', train=True, download=False, transform=transforms.Compose(
[transforms.Resize(self.opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
)
dataset_size = len(mnist)
train_size = int(0.8 * dataset_size)
test_size = dataset_size - train_size
train_dataset, test_dataset = random_split(mnist, [train_size, test_size])
train_dataloader = DataLoader(
train_dataset,
batch_size=self.opt.batch_size,
shuffle=True,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=self.opt.batch_size,
shuffle=False, # 在测试集上不需要打乱顺序
)
return train_dataloader,test_dataloader
2、teacher模型和训练实现
(1)首先是teacher模型构造,经过三次线性层。
import torch.nn as nn
import torch
img_area = 784
class TeacherModel(nn.Module):
def __init__(self,in_channel=1,num_classes=10):
super(TeacherModel,self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(img_area,1200)
self.fc2 = nn.Linear(1200, 1200)
self.fc3 = nn.Linear(1200, num_classes)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
x = x.view(-1, img_area)
x = self.fc1(x)
x = self.dropout(x)
x = self.relu(x)
x = self.fc2(x)
x = self.dropout(x)
x = self.relu(x)
x = self.fc3(x)
return x
(2)训练teacher模型
老师模型训练完成后其权重参数会保存在teacher.pth当中,为以后调用。
import torch.nn as nn
import torch
## 创建文件夹
from tqdm import tqdm
from dist.TeacherModel import TeacherModel
weight_path = 'C:/Users/26394/PycharmProjects/untitled1/dist/params/teacher.pth'
## 设置cuda:(cuda:0)
cuda = True if torch.cuda.is_available() else False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True #使用卷积cuDNN加速
class TeacherTrainer():
def __init__(self,opt,train_dataloader,test_dataloader):
self.opt = opt
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
def trainer(self):
# 老师模型
opt = self.opt
train_dataloader = self.train_dataloader
test_dataloader = self.test_dataloader
teacher_model = TeacherModel()
teacher_model = teacher_model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_teacher = torch.optim.Adam(teacher_model.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
for epoch in range(opt.n_epochs): ## epoch:50
teacher_model.train()
for data, targets in tqdm(train_dataloader):
data = data.to(device)
targets = targets.to(device)
preds = teacher_model(data)
loss = criterion(preds, targets)
optimizer_teacher.zero_grad()
loss = criterion(preds, targets)
loss.backward()
optimizer_teacher.step()
teacher_model.eval()
num_correct = 0
num_samples = 0
with torch.no_grad():
for x, y in test_dataloader:
x = x.to(device)
y = y.to(device)
preds = teacher_model(x)
predictions = preds.max(1).indices
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
acc = (num_correct / num_samples).item()
torch.save(teacher_model.state_dict(), weight_path)
teacher_model.train()
print('teacher: Epoch:{}t Accuracy:{:.4f}'.format(epoch + 1, acc))
(3)训练teacher模型
模型参数都在paras()当中设置好了,直接调用teacher_model就行,然后将其权重参数会保存在teacher.pth当中。
import argparse
import torch
from dist.DistillationTrainer import DistillationTrainer
from dist.MyDateLoader import MyDataset
from dist.TeacherTrainer import TeacherTrainer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def paras():
## 超参数配置
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=5, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=2, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=500, help="interval betwen image samples")
opt = parser.parse_args()
## opt = parser.parse_args(args=[]) ## 在colab中运行时,换为此行
print(opt)
return opt
if __name__ == '__main__':
opt = paras()
data = MyDataset(opt)
train_dataloader, test_dataloader = data.MyData()
# 训练Teacher模型
teacher_trainer = TeacherTrainer(opt,train_dataloader,test_dataloader)
teacher_trainer.trainer()
3、学生模型的构建
学生模型也是经过了三次线性层,但是神经元没有teacher当中多。所以student模型会比teacher模型小很多。
import torch.nn as nn
import torch
img_area = 784
class StudentModel(nn.Module):
def __init__(self,in_channel=1,num_classes=10):
super(StudentModel,self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(img_area,20)
self.fc2 = nn.Linear(20, 20)
self.fc3 = nn.Linear(20, num_classes)
def forward(self, x):
x = x.view(-1, img_area)
x = self.fc1(x)
# x = self.dropout(x)
x = self.relu(x)
x = self.fc2(x)
# x = self.dropout(x)
x = self.relu(x)
x = self.fc3(x)
return x
4、知识蒸馏训练
(1)首先读取teacher模型。
将teacher模型中的权重参数teacher.pth放入模型当中。
#拿取训练好的模型
teacher_model = TeacherModel()
if os.path.exists(weights):
teacher_model.load_state_dict(torch.load(weights))
print('successfully')
else:
print('not loading')
teacher_model = teacher_model.to(device)
(2)设置损失求解的函数
hard_loss用的就是普通的交叉熵损失函数,而soft_loss就是用的KL散度。
# hard_loss
hard_loss = nn.CrossEntropyLoss()
# hard_loss权重
alpha = 0.3
# sof服务器托管网t_loss
soft_loss = nn.KLDivLoss(reduction="batchmean")
(3)之后再进行蒸馏训练,温度为7
- 先求得hard_loss就是用学生模型预测的标签和真实标签进行求得损失。
- 再求soft_loss就是用学生模型预测的标签和老师模型预测的标签进行求得损失。使用softmax时候还需要进行除以温度temp。
- 最后反向传播,求解模型
for epoch in range(opt.n_epochs): ## epoch:5
for data, targets in tqdm(train_dataloader):
data = data.to(device)
targets = targets.to(device)
# 老师模型预测
with torch.no_grad():
teacher_preds = teacher_model(data)
# 学生模型预测
student_preds = model(data)
# 计算hard_loss
student_loss = hard_loss(student_preds, targets)
# 计算蒸馏后的预测损失
ditillation_loss = soft_loss(
F.softmax(student_preds / temp, dim=1),
F.softmax(teacher_preds / temp, dim=1)
)
loss = alpha * student_loss + (1 - alpha) * ditillation_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
num_correct = 0
num_samples = 0
with torch.no_grad():
for x, y in test_dataloader:
x = x.to(device)
y = y.to(device)
preds = model(x)
predictions = preds.max(1).indices
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
acc = (num_correct / num_samples).item()
model.train()
print('distillation: Epoch:{}t Accuracy:{:.4f}'.format(epoch + 1, acc))
(4)整个蒸馏训练代码
import torch.nn as nn
import torch
import torch.nn.functional as F
import os
from tqdm import tqdm
from dist.StudentModel import StudentModel
from dist.TeacherModel import TeacherModel
weights = 'C:/Users/26394/PycharmProjects/untitled1//dist/params/teacher.pth'
# D_weight_path = 'C:/Users/26394/PycharmProjects/untitled1/dist/params/distillation.pth'
## 设置cuda:(cuda:0)
cuda = True if torch.cuda.is_available() else False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True #使用卷积cuDNN加速
class DistillationTrainer():
def __init__(self,opt,train_dataloader,test_dataloader):
self.opt = opt
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
def trainer(self):
opt = self.opt
train_dataloader = self.train_dataloader
test_dataloader = self.test_dataloader
#拿取训练好的模型
teacher_model = TeacherModel()
if os.path.exists(weights):
teacher_model.load_state_dict(torch.load(weights))
print('successfully')
else:
print('not loading')
teacher_model = teacher_model.to(device)
teacher_model.eval()
model = StudentModel()
model = model.to(device)
temp = 7
# hard_loss
hard_loss = nn.CrossEntropyLoss()
# hard_loss权重
alpha = 0.3
# soft_loss
soft_loss = nn.KLDivLoss(reduction="batchmean")
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
for epoch in range(opt.n_epochs): ## epoch:5
for data, targets in tqdm(train_dataloader):
data = data.to(device)
targets = targets.to(device)
# 老师模型预测
with torch.no_grad():
teacher_preds = teacher_model(data)
# 学生模型预测
student_preds = model(data)
# 计算hard_loss
student_loss = hard_loss(student_preds, targets)
# 计算蒸馏后的预测损失
ditillation_loss = soft_loss(
F.softmax(student_preds / temp, dim=1),
F.softmax(teacher_preds / temp, dim=1)
)
loss = alpha * student_loss + (1 - alpha) * ditillation_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
num_correct = 0
num_samples = 0
with torch.no_grad():
for x, y in test_dataloader:
x = x.to(device)
y = y.to(device)
preds = model(x)
predictions = preds.max(1).indices
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
acc = (num_correct / num_samples).item()
model.train()
print('distillation: Epoch:{}t Accuracy:{:.4f}'.format(epoch + 1, acc))
(5)蒸馏训练的主函数
该部分大致与teacher模型训练类似,只是调用不同。
import argparse
import torch
from dist.DistillationTrainer import DistillationTrainer
from dist.MyDateLoader import MyDataset
from dist.TeacherTrainer import TeacherTrainer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def paras():
## 超参数配置
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=5, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order mo服务器托管网mentum of gradient")
parser.add_argument("--n_cpu", type=int, default=2, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=500, help="interval betwen image samples")
opt = parser.parse_args()
## opt = parser.parse_args(args=[]) ## 在colab中运行时,换为此行
print(opt)
return opt
if __name__ == '__main__':
opt = paras()
data = MyDataset(opt)
train_dataloader, test_dataloader = data.MyData()
# 训练Teacher模型
# teacher_trainer = TeacherTrainer(opt,train_dataloader,test_dataloader)
# teacher_trainer.trainer()
distillation_trainer = DistillationTrainer(opt,train_dataloader,test_dataloader)
distillation_trainer.trainer()
三、总结
总的来说,知识蒸馏是一种有效的模型压缩技术,可以通过在模型训练过程中引入额外的监督信号来训练简化的模型,从而获得与大型复杂模型相近的性能,但具有更小的模型尺寸和计算开销。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
搭建nodejs环境详细介绍 1. node.js介绍 2. 下载Node.js 3. 安装Node.js 3.1 对于Windows系统 3.2 对于macOS系统 3.3 对于Linux系统 4. 验证安装 5. 配置npm(可选) 6. 安装Node.j…