开启OneAPI服务
OneAPI介绍
OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.
项目地址:https://github.com/songquanpeng/one-api
使用OneAPI
基于docker部署:
# 使用 SQLite 的部署命令:
docker run --name one-api -d --restart always -p 3000:3000 -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api
# 使用 My服务器托管网SQL 的部署命令,在上面的基础上添加 `-e SQL_DSN="root:123456@tcp(localhost:3306)/oneapi"`,请自行修改数据库连接参数,不清楚如何修改请参见下面环境变量一节。
# 例如:
docker run --name one-api -d --restart always -p 3000:3000 -e SQL_DSN="root:123456@tcp(localhost:3306)/oneapi" -e TZ=Asia/Shanghai -v /home/ubuntu/data/one-api:/data justsong/one-api
部署完成后,打开本地3000端口,如下所示:
初始账户为root,密码为123456。
登录之后,会提示修改密码。
点击渠道,创建新的渠道:
填入自己的大模型密钥。
添加令牌:
测试OneAPI服务是否可用
使用Postman查看接口是否可用:
注意事项:
接口地址
:http://:3000/v1/chat/completions
ip地址可通过cmd输入ipconfig查到。
在请求中加入令牌
:
在红框位置输入OneAPI中的令牌。
测试的json
:
{
"model":"SparkDesk",
"messages":[
{
"role":"user",
"content":"你是谁"
}
],
"temperature":0.7
}
星火大模型的响应
:
{
"id": "",
"object": "chat.completion",
"created": 1709004732,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "您好,我是科大讯飞研发的认知智能大模型,我的名字叫讯飞星火认知大模型。我可以和人类进行自然交流,解答问题,高效完成各领域认知智能需求。"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 2,
"completion_tokens": 40,
"total_tokens": 42
}
}
创建WPF项目
SemanticKernel简介
Semantic Kernel 是一个开源 SDK,可让您轻松构建可以调用现有代码的代理。作为高度可扩展的 SDK,可以将语义内核与 OpenAI、Azure OpenAI、Hugging Face 等模型一起使用!通过将现有的 C#、Python 和 Java 代码与这些模型相结合,可以生成用于回答问题和自动执行流程的代理。
安装SemanticKernel
在SemanticKernel中使用星火大模型
创建一个OpenAIHttpClientHandler类
OpenAIHttpClientHandler类代码:
public class OpenAIHttpClientHandler : HttpClientHandler
{
protected override async Task SendAsync(HttpRequestMessage request, CancellationToken cancellationToken)
{
UriBuilder uriBuilder;
switch (request.RequestUri?.LocalPath)
{
case "/v1/chat/completions":
uriBuilder = new UriBuilder(request.RequestUri)
{
// 这里是你要修改的 URL
Scheme = "http",
Host = "你的ip地址",
Port = 3000,
Path = "v1/chat/completions",
};
request.RequestUri = uriBuilder.Uri;
break;
}
// 接着,调用基类的 SendAsync 方法将你的修改后的请求发出去
HttpResponseMessage response = await base.SendAsync(request, cancellationToken);
int n = 0;
while ((int)response.StatusCode == 500 && n
使用dotenv.net存储敏感数据
在dotenv.net.dll同一路径下,创建一个.env文件:
在.env文件中存储敏感数据:
模型ID要写SparkDesk,注意不要有空格,试过了有空格会报错。
APIKey就是写之前在OneAPI中复制的令牌。
测试能不能用
测试代码如下:
// 加载环境变量
DotEnv.Load();
// 读取环境变量
var envVars = DotEnv.Read();
// Create kernel
var builder = Kernel.CreateBuilder();
var handler = new OpenAIHttpClientHandler();
builder.AddOpenAIChatCompletion(
modelId: envVars["ModeId"],
apiKey: envVars["APIKey"],
httpClient: new HttpClient(handler));
var kernel = builder.Build();
// Create chat history
ChatHistory history = [];
// Get chat completion service
var chatCompletionService = kernel.GetRequiredService();
// Start the conversation
history.AddUserMessage("你是谁?");
// Enable auto function calling
OpenAIPromptExecutionSettings openAIPromptExecutionSettings = new()
{
ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions
};
// Get the response from the AI
var result = await chatCompletionService.GetChatMessageContentAsync(
history,
executionSettings: openAIPromptExecutionSettings,
kernel: kernel);
// Print the results
Console.WriteLine("Assistant > " + result);
// Add the message from the agent to the chat history
history.AddMessage(result.Role, result.Content);
}
查看结果:
第一次请求失败,为了解决这个问题,我们加了下面这段代码:
int n = 0;
while ((int)response.StatusCode == 500 && n
再请求一遍就成功了。
收到了星火认知大模型的回答。
使用HandyControl构建页面
xaml如下:
实现效果如下:
在WPF中集成SK+OneAPI+星火认知大模型
cs如下:
using dotenv.net;
using HandyControl.Controls;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using SK_Wpf.Plugins;
using System.Net.Http;
using System.Text服务器托管网;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace SK_Wpf
{
///
/// Interaction logic for MainWindow.xaml
///
public partial class MainWindow : System.Windows.Window
{
IDictionary? envVars;
Kernel? kernel;
ChatHistory history = [];
IChatCompletionService chatCompletionService;
public MainWindow()
{
InitializeComponent();
}
private void Window_Loaded(object sender, RoutedEventArgs e)
{
// 加载环境变量
DotEnv.Load();
// 读取环境变量
envVars = DotEnv.Read();
// Create kernel
var builder = Kernel.CreateBuilder();
var handler = new OpenAIHttpClientHandler();
builder.AddOpenAIChatCompletion(
modelId: envVars["ModeId"],
apiKey: envVars["APIKey"],
httpClient: new HttpClient(handler));
builder.Plugins.AddFromType("helloPlugin");
var kernel = builder.Build();
// Get chat completion service
chatCompletionService = kernel.GetRequiredService();
}
private async void Button_Click_1(object sender, RoutedEventArgs e)
{
loading1.Visibility = Visibility.Visible;
string question = textBox1.Text;
// Get user input
history.AddUserMessage(question);
// Enable auto function calling
OpenAIPromptExecutionSettings openAIPromptExecutionSettings = new()
{
ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions
};
// Get the response from the AI
var result = await chatCompletionService.GetChatMessageContentAsync(
history,
executionSettings: openAIPromptExecutionSettings,
kernel: kernel);
// Print the results
richTextBox2.AppendText(result.ToString());
// Add the message from the agent to the chat history
history.AddMessage(result.Role, result.Content);
loading1.Visibility = Visibility.Hidden;
}
}
}
实现效果如下所示:
总结
本文是一次在WPF使用SemanticKernel基于OneAPI集成讯飞星火认知大模型的实践,没有申请OpenAIAPIKey的可以使用讯飞星火认知大模型,现在个人身份认证有送200万token,个人使用可以用很久了。但是效果上肯定和OpenAI还有差别,经过测试,自动本地函数调用,用OpenAI可以用星火认知大模型不行。下期可以写一下两个模型回答的对比。
最后感谢大佬们的分享,见参考。
参考
1、想学Semantic Kernel,没有OpenAI接口该怎么办? (qq.com)
2、实战教学:用Semantic Kernel框架集成腾讯混元大模型应用 (qq.com)
3、Create AI agents with Semantic Kernel | Microsoft Learn
4、songquanpeng/one-api: OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI. (github.com)
5、microsoft/semantic-kernel: Integrate cutting-edge LLM technology quickly and easily into your apps (github.com)
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
相关推荐: 阿里云云原生专场精彩内容集锦丨2023 云原生产业大会
2023 云原生产业大会已于昨日闭幕,在阿里云云原生专场,来自阿里云的多位技术专家、中国信通院云大所副总工程师陈屹力及安永科技咨询合伙人王祺都带来了精彩的分享。 关注公众号,后台回复:1201 免费获得阿里云云原生专场PPT 合辑 本次大会正值云原生技术规模化…