本文分享自华为云社区《【防过载检查项】》,作者: 譡里个檔。
1. GUC参数检查
目的:针对不同版本建议设定不同的参数值,当前先检查出来,后续diagnosis会给出建议值
SELECT split_part((substring(version() from '((.*))')), ' ', 2) AS version, (EXISTS (SELECT 1 FROM (SELECT count(DISTINCT node_name) AS dn_cnt FROM pgxc_node WHERE node_type = 'D' AND node_host 'localhost' GROUP BY node_host) WHERE dn_cnt 1) ) AS sdn_per_node, node_name, name AS guc_name, CASE WHEN unit = 'ms' THEN setting::bigint/1000 || ' s' WHEN unit = 's' THEN setting || ' s' WHEN unit = 'KB' THEN pg_size_pretty(setting*1024) WHEN unit = '8KB' THEN pg_size_pretty(setting*1024*8) ELSE setting END AS setting, unit, CASE WHEN name = 'default_distribution_mode' THEN CASE WHEN setting 'roundrobin' THEN 'roundrobin' END WHEN name = 'autovacuum' THEN CASE WHEN setting 'on' THEN 'on' END WHEN name = 'autovacuum_max_workers' THEN CASE WHEN setting::int > 6 THEN '6' END WHEN name = 'autovacuum_max_workers' THEN CASE WHEN setting::int > 3 THEN '3' END WHEN name = 'session_timeout' THEN CASE WHEN setting::int > 6服务器托管网00 OR setting::int = 0 THEN ' 24* 60 * 1000 OR setting::int = 0 THEN ' 300*1024*1024 OR setting IN ('0', '-1') THEN ' 100*1024*1024 OR setting IN ('0', '-1') THEN ' 1*1024*1024 THEN '=5000' END ELSE '' END AS diagnosis FROM pgxc_parallel_query('all', 'SELECT pgxc_node_str() AS node_name, name, setting, unit FROM pg_settings WHERE pgxc_node_str() IN (''cn_5001'',''dn_6001_6002'') AND name in (''max_streams_per_query'',''query_dop'' ,''sql_use_spacelimit'',''temp_file_limit'',''default_distribution_mode'', ''autovacuum_mode'',''autovacuum'',''autovacuum_max_workers_hstore'',''autovacuum_max_workers'', ''session_timeout'',''statement_timeout'',''ddl_lock_timeout'',''idle_in_transaction_timeout'', ''max_connections'',''min_pool_size'',''max_pool_size'', ''max_stream_pool'',''max_active_statements'',''max_prepared_transactions'', ''cstore_buffers'',''shared_buffers'', ''max_process_memory'', ''udf_memory_limit'', ''max_process_memory_balanced'', ''bbox_dump_count'', ''enable_bbox_dump'')') AS (node_name name, name text, setting text, unit text) ORDER BY node_name, name;
2. 大表检查
目的:识别大表,建议客户整改,避免磁盘过载
8.1.3版本使用如下SQL
SELECT CASE WHEN (skewsize > avgsize * 0.10 AND skewsize > 50 * 1024) THEN 'skew table' WHEN (reloptions::text LIKE '%orientation=column%' AND reloptions::text LIKE '%compression=no%') THEN 'uncompressed column table' WHEN (x.pclocatortype = 'R' AND avgsize > 10 * 1024) THEN 'large replicattion table' WHEN (pg_stat_get_dead_tuples(c.oid) >100000 AND pg_stat_get_dead_tuples(c.oid)/(pg_stat_get_dead_tuples(c.oid)+pg_stat_get_live_tuples(c.oid)) > 0.4) THEN 'dirty table' ELSE 'normal large table' END AS diagnostic, t1.schemaname, -- 表的schema t1.tablename, -- 表名 a.rolname AS tableowner, x.pgroup AS nodegroup, CASE x.pclocatortype WHEN 'H' THEN服务器托管网 'Hash' WHEN 'N' THEN 'Round Robin' WHEN 'R' THEN 'Replicate' END AS locatortype, CASE WHEN c.parttype = 'p' THEN true ELSE false END AS ispartitioned, CASE WHEN reloptions::text LIKE '%orientation=column%' THEN 'column' WHEN reloptions::text LIKE '%orientation=row%' THEN 'row' END AS orientation, t1.dnnum, -- 表的node group的DN数 t1.totalsize AS "totalsize(MB)", -- 表的size ,单位MB t1.avgsize AS "avgsize(MB)", -- 平均每个DN上数据量,单位MB t1.skewsize AS "skewsize(MB)", -- 不同DN上数据size的最大差值,单位MB t1.skewdn, -- 数据量最大的DN t1.maxratio, -- 数据量最大DN的size/平均size t1.minratio, -- 数据量最小DN的size/平均size t1.skewratio -- 不同DN上数据size的最大差值/平均size FROM ( -- 预处理,识别倾斜表 SELECT schemaname, tablename, skewdn, dnnum, totalsize, avgsize, skewsize, (maxsize/avgsize)::numeric(20,2) AS maxratio, (minsize/avgsize)::numeric(20,2) AS minratio, (skewsize/avgsize)::numeric(20,2) AS skewratio FROM ( SELECT schemaname,tablename,skewdn,count(1) AS dnnum,sum(dnsize) AS totalsize, avg(dnsize) AS avgsize,max(dnsize) AS maxsize,min(dnsize) AS minsize, (max(dnsize) - min(dnsize)) AS skewsize FROM ( --对每个表的数据按照DN数据量大小排序,以及获取倾斜的dn SELECT schemaname, tablename, nodename, (dnsize/1024/1024)::bigint AS dnsize, -- 单位换算为MB first_value(nodename) over (PARTITION BY schemaname, tablename ORDER BY dnsize DESC, nodename) AS skewdn -- --数据量最大的DN FROM ( -- 获取大于10GB的表 SELECT schemaname, tablename,(rd).nodename, ((rd).dnsize + 1) AS dnsize FROM ( SELECT schemaname, tablename, gs_table_distribution(schemaname, tablename) AS rd FROM gs_table_distribution() WHERE schemaname NOT IN ('pg_catalog', 'dbms_om', 'cstore') AND relkind = 'r' GROUP BY schemaname, tablename HAVING sum(dnsize) > 50.0 * 1024 * 1024 * 1024 -- 总大小大于100GB ) ) ) GROUP BY schemaname,tablename, skewdn ) ) t1 INNER JOIN pg_class c ON c.relname = t1.tablename LEFT JOIN pg_namespace n ON n.nspname = t1.schemaname LEFT JOIN pg_authid a ON a.oid = c.relowner LEFT JOIN pgxc_class x ON x.pcrelid = c.oid WHERE c.reloptions::text NOT LIKE '%internal_mask%' ORDER BY totalsize DESC, diagnostic, skewsize DESC ;
8.2.1和8.2.0版本使用如下
-- 大表诊断 SELECT CASE WHEN (skewsize > avgsize * 0.10 AND skewsize > 50 * 1024) THEN 'skew table' WHEN (reloptions::text LIKE '%orientation=column%' AND reloptions::text LIKE '%compression=no%') THEN 'uncompressed column table' WHEN (x.pclocatortype = 'R' AND avgsize > 10 * 1024) THEN 'large replicattion table' WHEN (pg_stat_get_dead_tuples(c.oid) >100000 AND pg_stat_get_dead_tuples(c.oid)/(pg_stat_get_dead_tuples(c.oid)+pg_stat_get_live_tuples(c.oid)) > 0.4) THEN 'dirty table' WHEN (reloptions::text LIKE '%orientation=column%') THEN CASE WHEN (SELECT total_cu_count > 0 AND (zero_size_cu_count + small_cu_count)/total_cu_count > 0.5 FROM get_col_cu_info(t1.schemaname, t1.tablename)) THEN 'small cu table' ELSE 'normal large table' END ELSE 'normal large table' END AS diagnostic, t1.schemaname, -- 表的schema t1.tablename, -- 表名 a.rolname AS tableowner, x.pgroup AS nodegroup, CASE x.pclocatortype WHEN 'H' THEN 'Hash' WHEN 'N' THEN 'Round Robin' WHEN 'R' THEN 'Replicate' END AS locatortype, CASE WHEN c.parttype = 'p' THEN true ELSE false END AS ispartitioned, CASE WHEN reloptions::text LIKE '%orientation=column%' THEN 'column' WHEN reloptions::text LIKE '%orientation=row%' THEN 'row' END AS orientation, t1.dnnum, -- 表的node group的DN数 t1.totalsize AS "totalsize(MB)", -- 表的size ,单位MB t1.avgsize AS "avgsize(MB)", -- 平均每个DN上数据量,单位MB t1.skewsize AS "skewsize(MB)", -- 不同DN上数据size的最大差值,单位MB t1.skewdn, -- 数据量最大的DN t1.maxratio, -- 数据量最大DN的size/平均size t1.minratio, -- 数据量最小DN的size/平均size t1.skewratio -- 不同DN上数据size的最大差值/平均size FROM ( -- 预处理,识别倾斜表 SELECT schemaname, tablename, skewdn, dnnum, totalsize, avgsize, skewsize, (maxsize/avgsize)::numeric(20,2) AS maxratio, (minsize/avgsize)::numeric(20,2) AS minratio, (skewsize/avgsize)::numeric(20,2) AS skewratio FROM ( SELECT schemaname, tablename, skewdn, count(1) AS dnnum, sum(dnsize) AS totalsize, avg(dnsize) AS avgsize, max(dnsize) AS maxsize, min(dnsize) AS minsize, (max(dnsize) - min(dnsize)) AS skewsize FROM ( --对每个表的数据按照DN数据量大小排序,以及获取倾斜的dn SELECT schemaname, tablename, nodename, (dnsize/1024/1024)::bigint AS dnsize, -- 单位换算为MB first_value(nodename) over (PARTITION BY schemaname, tablename ORDER BY dnsize DESC, nodename) AS skewdn -- --数据量最大的DN FROM ( -- 获取大于10GB的表 SELECT schemaname, tablename,(rd).nodename, ((rd).dnsize + 1) AS dnsize FROM ( SELECT schemaname, tablename, gs_table_distribution(schemaname, tablename) AS rd FROM gs_table_distribution() WHERE schemaname NOT IN ('pg_catalog', 'dbms_om', 'cstore') AND relkind = 'r' GROUP BY schemaname, tablename HAVING sum(dnsize) > 50* 1024 * 1024 * 1024.0 -- 总大小大于100GB ) ) ) GROUP BY schemaname,tablename, skewdn ) ) t1 INNER JOIN pg_class c ON c.relname = t1.tablename LEFT JOIN pg_namespace n ON n.nspname = t1.schemaname LEFT JOIN pg_authid a ON a.oid = c.relowner LEFT JOIN pgxc_class x ON x.pcrelid = c.oid WHERE c.reloptions::text NOT LIKE '%internal_mask%' ORDER BY totalsize DESC, diagnostic, skewsize DESC ;
8.3.0版本使用
-- 大表诊断 SELECT CASE WHEN (skewsize > avgsize * 0.10 AND skewsize > 50 * 1024) THEN 'skew table' WHEN (reloptions::text LIKE '%orientation=column%' AND reloptions::text LIKE '%compression=no%') THEN 'uncompressed column table' WHEN (x.pclocatortype = 'R' AND avgsize > 10 * 1024) THEN 'large replicattion table' WHEN (pg_stat_get_dead_tuples(c.oid) >100000 AND pg_stat_get_dead_tuples(c.oid)/(pg_stat_get_dead_tuples(c.oid)+pg_stat_get_live_tuples(c.oid)) > 0.4) THEN 'dirty table' WHEN (reloptions::text LIKE '%orientation=column%') THEN CASE WHEN (SELECT total_cu_count > 0 AND (zero_cu_count + small_cu_count)/total_cu_count > 0.5 FROM pgxc_get_small_cu_info(c.oid)) THEN 'small cu table' ELSE 'normal large table' END ELSE 'normal large table' END AS diagnostic, t1.schemaname, -- 表的schema t1.tablename, -- 表名 a.rolname AS tableowner, x.pgroup AS nodegroup, CASE x.pclocatortype WHEN 'H' THEN 'Hash' WHEN 'N' THEN 'Round Robin' WHEN 'R' THEN 'Replicate' END AS locatortype, CASE WHEN c.parttype = 'p' THEN true ELSE false END AS ispartitioned, CASE WHEN reloptions::text LIKE '%orientation=column%' THEN 'column' WHEN reloptions::text LIKE '%orientation=row%' THEN 'row' END AS orientation, t1.dnnum, -- 表的node group的DN数 t1.totalsize AS "totalsize(MB)", -- 表的size ,单位MB t1.avgsize AS "avgsize(MB)", -- 平均每个DN上数据量,单位MB t1.skewsize AS "skewsize(MB)", -- 不同DN上数据size的最大差值,单位MB t1.skewdn, -- 数据量最大的DN t1.maxratio, -- 数据量最大DN的size/平均size t1.minratio, -- 数据量最小DN的size/平均size t1.skewratio -- 不同DN上数据size的最大差值/平均size FROM ( -- 预处理,识别倾斜表 SELECT schemaname, tablename, skewdn, dnnum, totalsize, avgsize, skewsize, (maxsize/avgsize)::numeric(20,2) AS maxratio, (minsize/avgsize)::numeric(20,2) AS minratio, (skewsize/avgsize)::numeric(20,2) AS skewratio FROM ( SELECT schemaname, tablename, skewdn, count(1) AS dnnum, sum(dnsize) AS totalsize, avg(dnsize) AS avgsize, max(dnsize) AS maxsize, min(dnsize) AS minsize, (max(dnsize) - min(dnsize)) AS skewsize FROM ( --对每个表的数据按照DN数据量大小排序,以及获取倾斜的dn SELECT schemaname, tablename, nodename, (dnsize/1024/1024)::bigint AS dnsize, -- 单位换算为MB first_value(nodename) over (PARTITION BY schemaname, tablename ORDER BY dnsize DESC, nodename) AS skewdn -- --数据量最大的DN FROM ( -- 获取大于10GB的表 SELECT schemaname, tablename,(rd).nodename, ((rd).dnsize + 1) AS dnsize FROM ( SELECT schemaname, tablename, gs_table_distribution(schemaname, tablename) AS rd FROM gs_table_distribution() WHERE schemaname NOT IN ('pg_catalog', 'dbms_om', 'cstore') AND relkind = 'r' GROUP BY schemaname, tablename HAVING sum(dnsize) > 50.0 * 1024 * 1024 * 1024 -- 总大小大于100GB ) ) ) GROUP BY schemaname,tablename, skewdn ) ) t1 INNER JOIN pg_class c ON c.relname = t1.tablename LEFT JOIN pg_namespace n ON n.nspname = t1.schemaname LEFT JOIN pg_authid a ON a.oid = c.relowner LEFT JOIN pgxc_class x ON x.pcrelid = c.oid WHERE c.reloptions::text NOT LIKE '%internal_mask%' ORDER BY totalsize DESC, diagnostic, skewsize DESC ;
针对不同的诊断结果使用如下诊断措施
类别 |
建议手段 |
skew table |
根据业务选择关联常用,并且数据不倾斜的列作为修改分布列,如果找不到合适的分布列,可以把表修改为RoundRobin分布 ALTER TABLE ctmes_tgmesmbi.mbi_hlottsthisDISTRIBUTE BY ROUNDROBIN;复制
|
uncompressed column table |
列存表的压缩效果非常好,一般推荐使用压缩,至少使用low级别压缩 ALTER TABLE customer_address SET(compression=low); VACUUM FULL customer_address;复制
|
dirty table |
说明表检测碎片率比较高,需要通过VACUUM整理表 VACUUM FULL customer_address;复制
|
small cu table |
说明表小CU比较多,需要通过VACUUM整理表 VACUUM FULL customer_address;复制
|
large replicattion table |
复制表在每个DN上都有一份全量数据,当表磁盘空间占用过大时,需要把表修改为HASH表。一般复制表都是维表,存在主键,直接把分布列修改为主键 ALTER TABLE ctmes_tgmesmbi.mbi_hlottsthisDISTRIBUTE BY HASH(id);复制 |
normal large table |
3. 冗余索引诊断
目的:识别冗余索引,建议客户删除。可以降低磁盘空间,并降低大规模数据导入的时候的xlog规模
-- optimizable policy为duplicate的检查项 -- 表明两个索引字段和字段顺序完全一致 -- 建议直接删除optimizable index指定的索引; -- optimizable policy为redundancy检查项表明 -- optimizable index指定的索引的索引列刚好是base index的索引列的前面字段 -- 建议直接删除optimizable index指定的索引; -- optimizable policy为optimizable检查项 -- 表明optimizable index和base index这两个索引的索引列完全重复,但是索引列的顺序不一致 -- 这种场景需要人工介入分析是否可以优化 WITH info AS( SELECT quote_ident(n.nspname) || '.' || quote_ident(c.relname) AS tablename, pgroup AS nodegroup, x.indrelid AS indrelid, x.indexrelid AS indexrelid, indisunique, indisprimary, indnatts, indkey, indexprs FROM pg_index x INNER JOIN pg_class c ON c.oid = x.indrelid INNER JOIN pg_class i ON i.oid = x.indexrelid LEFT JOIN pg_namespace n ON n.oid = c.relnamespace INNER JOIN pgxc_class xc ON xc.pcrelid = c.oid WHERE c.relkind = 'r' AND c.oid >= 16384 AND (c.reloptions IS NULL OR c.reloptions::text NOT LIKE '%internal_mask%') AND i.relkind = 'i' AND i.oid >= 16384 AND x.indpred IS NULL ), base AS( SELECT tablename, nodegroup, i.indrelid, i.indexrelid baseidx, i.indisunique AS base_unique, i.indisprimary AS base_primary, x.indexrelid AS optidx, x.indisunique AS opt_unique, x.indisprimary AS opt_primary, CASE WHEN opt_primary > base_primary OR opt_unique > base_unique THEN true ELSE false END AS swap, CASE WHEN i.indkey = x.indkey AND coalesce(pg_get_expr(i.indexprs, i.indrelid), 'NULL') = coalesce(pg_get_expr(x.indexprs, x.indrelid), 'NULL') THEN 'duplicate'::text WHEN x.indexprs IS NOT NULL OR i.indexprs IS NOT NULL THEN NULL::text WHEN strpos(i.indkey::text, x.indkey::text||' ') = 1 OR strpos(x.indkey::text, i.indkey::text||' ') = 1 THEN 'redundancy'::text WHEN i.indkey @> x.indkey AND x.indkey @> i.indkey THEN 'optimizable'::text ELSE NULL END AS optpolicy FROM info i INNER JOIN pg_index x ON (i.indrelid = x.indrelid AND i.indexrelid > x.indexrelid) WHERE x.indpred IS NULL AND optpolicy IS NOT NULL ), tmp AS( SELECT tablename, indrelid, nodegroup, CASE WHEN swap THEN optidx ELSE baseidx END AS base_idx, CASE WHEN swap THEN opt_primary ELSE base_primary END AS base_primary, CASE WHEN swap THEN opt_unique ELSE base_unique END AS base_unique, CASE WHEN swap THEN baseidx ELSE optidx END AS opt_idx, CASE WHEN swap THEN base_primary ELSE opt_primary END AS opt_primary, CASE WHEN swap THEN base_unique ELSE opt_unique END AS opt_unique, optpolicy FROM base ) SELECT tablename, nodegroup, base_idx::regclass::text AS base_index, base_primary, base_unique, substring(pg_get_indexdef(base_idx) from 'USING .+)') AS base_idxdef, opt_idx::regclass::text AS opt_index, opt_primary, opt_unique, substring(pg_get_indexdef(opt_idx) from 'USING .+)') AS opt_idxdef, optpolicy, pg_get_tabledef(indrelid) FROM tmp ORDER BY 1, 2, 3 ;
点击关注,第一时间了解华为云新鲜技术~
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: 什么是迁移学习(Transfer Learning)?定义,优势,方法
迄今为止,大多数人工智能(AI)项目都是通过监督学习技术构建的。监督学习是一种从无到有构建机器学习(ML)模型的方法,它对推动AI发展起到了关键作用。然而,由于需要大量的数据集和强大的计算能力,许多AI项目因为资源不足而未能取得成功。在这种情况下,人们希望能够…