文章目录
-
-
- 1. 导入相关库
- 2. 加载数据集
- 3. 整理数据集
- 4. 图像增广
- 5. 读取数据
- 6. 微调预训练模型
- 7. 定义损失函数和评价损失函数
- 9. 训练模型
-
1. 导入相关库
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
2. 加载数据集
- 该数据集是完整数据集的小规模样本
# 下载数据集
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
'0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')
# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:
data_dir = d2l.download_extract('dog_tiny')
else:
data_dir = os.path.join('..', 'data', 'dog-breed-identification')
3. 整理数据集
def reorg_dog_data(data_dir, valid_ratio):
labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
d2l.reorg_train_valid(data_dir, labels, valid_ratio)
d2l.reorg_test(data_dir)
batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)
4. 图像增广
transform_train = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0), ratio=(3.0/4.0,4.0/3.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
)
])
transform_test = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
)
])
5. 读取数据
train_ds, train_valid_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_train
) for folder in ['train', 'train_valid']
]
valid_ds, test_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_test
) for folder in ['valid', 'test']
]
train_iter, train_valid_iter = [
torch.utils.data.DataLoader(
dataset, batch_size, shuffle=True, drop_last=True
) for dataset in (train_ds, train_valid_ds)
]
valid_iter = torch.utils.data.DataLoader(
valid_ds, batch_size, shuffle=False, drop_last=True
)
test_iter = torch.utils.data.DataLoader(
test_ds, batch_size, shuffle=False, drop_last=True
)
6. 微调预训练模型
def get_net(devices):
finetune_net = nn.Sequential()
finetune_net.features = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1)
# 定义一个新的输出网络,共有120个输出类别
finetune_net.output_new = nn.Sequential(
nn.Linear(1000, 256),
nn.ReLU(),
nn.Linear(256, 120)
)
finetune_net = finetune_net.to(devices[0])
# 冻结参数
for param in finetune_net.features.parameters():
param.requires_grad = False
return finetune_net
# 查看网络模型
get_net(devices=d2l.try_all_gpus())
7. 定义损失函数和评价损失函数
# 定义损失函数
loss = nn.CrossEntropyLoss(reduction='none')
def evaluate_loss(data_iter, net, device):
l_sum, n = 0.0, 0
for features, labels in data_iter:
features, labels = features.to(device[0]), labels.to(device[0])
outputs = net(features)
l = loss(outputs, labels)
l_sum += l.sum()
n += labels.numel()
return (l_sum / n).to('cpu')
- 定义训练函数
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):
# 只训练小型定义输出网络
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
trainer = torch.optim.SGD(
(param for param in net.parameters() if param.requires_grad),
lr=lr, momentum=0.9, weight_decay=wd
)
scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
num_batches, timer = len(train_iter), d服务器托管网2l.Timer()
legend = ['train loss']
if valid_iter is not None:
legend.append('valid loss')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend)
for epoch in range(num_epochs):
metric = d2l.Accumulator(2)
for i, (features, labels) in enumerate(train_iter):
timer.start()
features, labels = features.to(devices[0]), labels.to(devices[0])
trainer.zero_grad()
output = net(features)
l = loss(output, labels).sum()
l.backward()
trainer.step()
metric.add(l, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(
epoch + (i + 1) / num_batches, (metric[0] / metric[1], None)
)
measures = f'train loss {metric[0] / metric[1]:.3f}'
if valid_iter is not None :
valid_loss = evaluate_loss(valid_iter, net, devices)
animator.add(epoch + 1, (None, valid_loss.detach().cpu()))
scheduler.step()
if valid_iter is not None:
measures += f', valid loss {valid_loss:.3f}'
print(measures + f'n{metric[1] * num_epochs / timer.sum():.1f}'
f'examples/sec on {str(devices)}')
9. 训练模型
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net, = 2, 0.9, get_net(devices)
import time
# 在开头设置开始时间
sta服务器托管网rt = time.perf_counter() # start = time.clock() python3.8之前可以
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)
# 在程序运行结束的位置添加结束时间
end = time.perf_counter() # end = time.clock() python3.8之前可以
# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f}')
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: 鸿蒙原生应用/元服务开发-AGC分发如何申请发布证书
申请发布证书发布证书由AGC颁发的、为HarmonyOS应用配置签名信息的数字证书,可保障软件代码完整性和发布者身份真实性。证书格式为.服务器托管网cer,包含公钥、证书指纹等信息。 说明 请确保您的开发者帐号已实名认证。每个帐号最多申请1个发布证书。 1.登…