- 导入相关库
import collections
import math
import os
import shutil
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
- 下载数据集
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
'2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')
# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = True
if demo:
data_dir = d2l.download_extract('cifar10_tiny')
else:
data_dir = '../data/kaggle/cifar-10/'
- 整理数据集
# 查看数据集
def read_csv_labels(fname):
"""读取‘fname’来给标签字典返回一个文件名"""
with open(fname, 'r') as f:
lines = f.readlines()[1:] # readlines(): 每次读文档的一行,以后还需要逐步循环
tokens = [l.rstrip().split(',') for l in lines] # rstrip(): 删除字符串后面(右面)的空格或特殊字符, 还有lstrip(左面)、strip(两面)
return dict((name, label) for name, label in tokens)
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('训练样本:', len(labels))
print('类别:', len(set(labels.values()))) # set(): 集合,里面不能包含重复的元素,接受一个list作为参数
将验证集从原始的训练集钟拆分出来
# 拆分数据集:训练集、验证集
def copyfile(filename, target_dir):
"""将文件复制到目标目录"""
os.makedirs(target_dir, exist_ok=True) # 创建多层目录,exist_ok为True:在目标目录已存在的情况下不会触发FileExistsError异常。
shutil.copy(filename, target_dir) #拷贝文件,filename:要拷贝的文件;target_dir:目标文件夹
def reorg_train_valid(data_dir, labels, valid_ratio):
"""将验证集从原始训练集钟拆分出来"""
# 训练数据集中样本数量最少的类别中的样本数
# Counter: 计数器,返回一个字典,键为元素,值为元素个数;
# .most_common(): 返回一个列表, 列表元素为(元素,出现次数),默认按出现频率排序
# [-1]: 样本数量最少的类别(类别, 样本数),[-1][1]: 样本数数量最少的类别中的样本数
n = collections.Counter(labels.values()).most_common()[-1][1]
# 验证集中每个类别的样本数
n_valid_per_label= max(1, math.floor((n * valid_ratio))) # math.floor(): 向下取整 math.ceil(): 向上取整
label_count = {}
# 遍历原始训练集中的每个样本
for train_file in os.listdir(os.path.join(data_dir, 'train')):
label = labels[train_file.split('.')[0]] # 从文件名中提取标签
fname = os.path.服务器托管网join(data_dir, 'train', train_file)
copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train_valid', label))
# 如果该类别的样本数还未达到在验证集中的设定数量,则将样本复制到验证集中
if label not in label_count or label_count[label] n_valid_per_label:
copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'valid', label))
label_count[label] = label_count.get(label, 0) + 1
else:
copyfile(fname, os.path.join(data_dir, 'train_valid_test', 'train', label))
return n_valid_per_label
# reorg_test函数用来在预测期间整理测试集,以方便读取
def reorg_test(data_dir):
"""在预测期间整理测试集,以方便读取"""
# 遍历测试集中的每个样本
for test_file in os.listdir(os.path.join(data_dir, 'test')):
# 将测试集中的样本复制到新的目录结构中的 'test' 子目录下,标签为 'unknown'
copyfile(os.path.join(data_dir, 'test', test_file),
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown'))
# 整个处理数据集函数
def reorg_cifar10_data(data_dir, valid_ratio):
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
reorg_train_valid(data_dir, labels, valid_ratio)
reorg_test(data_dir)
- 这个小规模数据集的批量大小是32,在实际的cifar-10数据集中,可以设为128
- 将10%的训练样本作为调整超参数的验证集
batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)
结果会生成一个train_valid_test的文件夹,里面有:
- test文件夹---unknow文件夹:5张没有标签的测试照片
- train_valid文件夹---10个类被的文件夹:每个文件夹包含所属类别的全部照片
- train文件夹--10个类别的文件夹:每个文件夹下包含90%的照片用于训练
- valid文件夹--10个类别的文件夹:每个文件夹下包含10%的照片用于验证
- 图像增广
transform_train = torchvision.transforms.Compose([
# 原本图像是32*32,先放大成40*40, 在随机裁剪为32*32,实现训练数据的增强
torchvision.transforms.Resize(40),
torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
[0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010]
)
])
transform_test = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
# 标准化图像的每个通道 : 消除评估结果中的随机性
torchvision.transforms.Normalize(
[0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010]
)
])
- 加载数据集
train_ds, train_valid_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),transform=transform_train
) for folder in ['train', 'train_valid']
]
valid_ds, test_ds = [
torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder), transform=transform_test
) for folder in ['valid', 'test']
]
- 定义迭代器,方便快速迭代数据
train_iter, train_valid_iter = [
torch.utils.data.DataLoader(
dataset, batch_size, shuffle=True, drop_last=True
) for dataset in (train_ds, train_valid_ds)
]
valid_iter = torch.utils.data.DataLoader(
valid_ds, batch_size, shuffle=False, drop_last=True
)
test_iter = torch.utils.data.DataLoader(
test_ds, batch_size, shuffle=False, drop_last=False
)
- 定义模型与损失函数
# 对resnet18做微调,输入通道数为3, 输出类别数为10
def get_net():
num_classes = 10
net = d2l.resnet18(num_classes, in_channels=3)
return net
# 查看网络模型
get_net()
# 使用交叉熵损失函数作为损失函数: 直接返回n分样本的loss
loss = nn.CrossEntropyLoss(reduction='none')
- 定义训练函数
# 定义训练函数
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay):
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=wd)
scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss', 'train acc']
if valid_iter is not None:
legend.append('valid acc')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], legend=legend)
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
for epoch in range(num_epochs):
net.train()
metric = d2l.Accumulator(3)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(net, features, labels, loss, trainer, devices)
metric.add(l, acc, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0]/ metric[2], metric[1] / metric[2], None))
if valid_iter is not None:
valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
animator.add(epoch+1, (None, None, valid_acc))
scheduler.step()
measures = (f'train loss {metric[0] / metric[2]:.3f},'
f'train acc{metric[1] / metric[2]:.3f}')
if valid_iter is not None:
measures += f', valid acc {valid_acc:.3f}'
print(measures + f'n{metric[2] * num_epochs /timer.sum():.1f}'
f'example/sec on {str(devices)}')
- 训练模型
- (数据集太小,导致精度不高)
import time
# 在开头设置开始时间
start = time.perf_counter() # start = time.clock() python3.8之前可以
# 训练和验证模型
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay)
# 在程序运行结束的位置添加结束时间
end = time.perf_counter() # end = time.clock() python3.8之前可以
# 再将其进行打印,即可显示出程序完成的运行耗时
print(f'运行耗时{(end-start):.4f}')
10. 对测试集进行分类并提交结果
net, preds = get_net(), []
train(net ,train_valid_iter, None, num_epochs, lr, wd, devices, lr_period, lr_decay)
for X, _ in test_iter:
y_hat = net(X.to(devices[0]))
preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id' : sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])
df.to_csv('submission.csv', index=False)
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: 将Python脚本打包成API通常可以使用一些框架和工具来简化这个过程。以下是一种使用Flask框架创建简单API的方
将Python脚本打包成API通常可以使用一些框架和工具来简化这个过程。以下是一种使用Flask框架创建简单API的方法: 安装Flask: 如果你还没有安装Flask,可以使用以下命令安装: pip install flask 创建Flask应用: 创建一个…