fmt.Printf(“%pn”, &xxx)的打印问题
后面的参数必须为 指针类型,否则IDE会有提示,运行后打出来的是%!p(int=0)
最后会到
// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *pp) fmt0x64(v uint64, leading0x bool) {
sharp := p.fmt.sharp
p.fmt.sharp = leading0x
p.fmt.fmtInteger(v, 16, unsigned, 'v', ldigits)
p.fmt.sharp = sharp
}
https://github.com/golang/go/blob/2a8969cb365a5539b8652d5ac1588aaef78d3e16/src/fmt/print.go#L553
通过查看源码及试验可知,fmt.Printf(“%p”,&sli)得到的是sliceHeader的地址,
想获取切片底层数组的地址,要fmt.Printf(“%p”,&sli[0]),或者fmt.Printf(“%p”,sli)? (因为sliceheader的第一个字段是底层数组的pointer)
对任何变量x都可以&x,即这个变量在内存里的地址。但如果x本身就是指针类型,fmt.Printf(“%p”,x)打印的就是这个指针类型对应的内容,如果fmt.Printf(“%p”,&x),那就是获取这个指针类型在内存里的地址,结果也是一个指针类型
// runtime/slice.go下不可导出的
type slice struct {
array unsafe.Pointer
len int
cap int
}
// reflect包可以导出的
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
下面正篇开始
case1: 当作为参数传递
共享底层数组,修改后会影响原值
package main
import (
"fmt"
)
func main() {
sli := make([]string, 1)
sli[0] = "宋江"
fmt.Println("slice is:", sli) // ["宋江"]
fmt.Printf("原始sli的长度%d,容量%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 1 1 内存地址a=内存地址a, 内存地址x
f1(sli)
fmt.Println("slice is:", sli) // ["晁盖"]
fmt.Printf("调用f1()之后sli的长度%d,容量%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 1 1 内存地址a=内存地址a,内存地址x (因为都是sli这个变量)
sli666 := sli
fmt.Printf("sli666的长度%d,容量%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli666), cap(sli666), sli666, &sli666[0], &sli666) // 1 1 内存地址a=内存地址a,内存地址y
}
func f1(sli1 []string) []string {
sli1[0] = "晁盖"
return sli1
}
输出:
slice is: [宋江]
原始sli的长度1,容量1,底层数组的内存地址的两种表示方式应该一致0x14000010230=0x14000010230,sliceheader的地址0x1400000c048
slice is: [晁盖]
调用f1()之后sli的长度1,容量1,底层数组的内存地址的两种表示方式应该一致0x14000010230=0x14000010230,sliceheader的地址0x1400000c048
sli666的长度1,容量1,底层数组的内存地址的两种表示方式应该一致0x14000010230=0x14000010230,sliceheader的地址0x1400000c0c0
再如:
package main
import "fmt"
// append无论如何都是从slice的尾部开始追加数据; 如果有append操作,很可能会引发扩容,要特别注意
func main() {
sli := make([]string, 1)
sli[0] = "宋江"
fmt.Printf("[main]原始sli为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致:%p=%p,sliceheader的地址%pn", sli, len(sli), cap(sli), sli, &sli[0], &sli)
// [main]原始sli为[]string{"宋江"},长度:1,容量:1,内存地址a=内存地址a,内存地址x
f2(sli)
fmt.Printf("[main]调用f2()之后sli为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致:%p=%p,sliceheader的地址%pn", sli, len(sli), cap(sli), sli, &sli[0], &sli)
// [main]调用f2()之后sli为[]string{"晁盖"},长度:1,容量:1,内存地址a=内存地址a,内存地址x
// 可见,只可能会影响底层数组的值,**不会影响长度和容量**
}
func f2(sli1 []string) []string {
fmt.Printf("[f2]f2中append之前sli1的长度%d,容量%d,底层数组的内存地址的两种表示方式应该一致:%p=%p,sliceheader的地址%pn", len(sli1), cap(sli1), sli1, &sli1[0], &sli1)
// [f2]f2中append之前sli1的长度1,容量1,内存地址a=内存地址a,内存地址y(可以看出是值传递)
sli1[0] = "晁盖" // 此时没有扩容,sli1和main中的sli地址一样,修改sli1[0]自然会影响main
sli1 = append(sli1, "卢俊义", "吴用", "公孙胜", "关胜")
// 如果将上面的sli1[0] = "晁盖"去掉,而在下方赋值,此时sli1和main中的sli内存地址不同,此时再修改sli1[0]不会影响到main
//sli1[0] = "晁盖"
fmt.Printf("[f2]f2中append之后sli1的长度%d,容量%d,底层数组的内存地址的两种表示方式应该一致:%p=%p,sliceheader的地址%pn", len(sli1), cap(sli1), sli1, &sli1[0], &sli1)
// [f2]f2中append之后sli1的长度5,容量5,内存地址b=内存地址b,内存地址y(可以看出是值传递)
return sli1
}
// append一定会改变原始slice的内存地址吗? 不一定,不发生扩容就不会改变~
输出:
[main]原始sli为[]string{"宋江"},长度:1,容量:1,底层数组的内存地址的两种表示方式应该一致:0x14000010230=0x14000010230,sliceheader的地址0x1400000c048
[f2]f2中append之前sli1的长度1,容量1,底层数组的内存地址的两种表示方式应该一致:0x14000010230=0x14000010230,sliceheader的地址0x1400000c090
[f2]f2中append之后sli1的长度5,容量5,底层数组的内存地址的两种表示方式应该一致:0x14000064050=0x14000064050,sliceheader的地址0x1400000c090
[main]调用f2()之后sli为[]string{"晁盖"},长度:1,容量:1,底层数组的内存地址的两种表示方式应该一致:0x14000010230=0x14000010230,sliceheader的地址0x1400000c048
通过索引修改切片元素会影响原切片,但通过append追加元素,则不会(改变原切片的长度和容量)
Go中参数传递都是值传递,但当参数为引用类型如slice等时需要注意
package main
import "fmt"
func main() {
i := make([]int, 10, 12)
i1 := i[8:]
// [0 0] 2 4 地址xxxxxxx
fmt.Printf("%v len:%d cap:%d ptr:%pn", i1, len(i1), cap(i1), i1)
changeSlice(i1)
// 此时i1变为了 [-1 0] 2 4
// 因为和i底层数组是一个,所以i也会改变
fmt.Println(i) // [0 0 0 0 0 0 0 0 -1 0]
fmt.Println("--------")
j := make([]int, 10, 12)
j1 := j[8:] // [0 0] 2 4
changeSlice2(j1) // [0 0 10] 3 4 ---为什么不对??
// [0 0 0 0 0 0 0 0 0 0] 10 12
fmt.Printf("j: %v, len of j: %d, cap of j: %dn", j, len(j), cap(j))
// [0 0 10] 3 4 ---为什么不对??
fmt.Printf("j1: %v, len of j1: %d, cap of j1: %dn", j1, len(j1), cap(j1))
}
func changeSlice(s1 []int) {
s1[0] = -1
}
func changeSlice2(s1 []int) {
s1 = append(s1, 10)
}
添加一些调试代码:
package main
import "fmt"
func main() {
i := make([]int, 10, 12)
fmt.Printf("[main] i: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", i, len(i), cap(i), i, &i)
i1 := i[8:]
fmt.Printf("[main] i1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", i1, len(i1), cap(i1), i1, &i1)
changeSlice(i1)
fmt.Printf("[main] i1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", i1, len(i1), cap(i1), i1, &i1)
fmt.Println(i)
fmt.Printf("[main] i: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", i, len(i), cap(i), i, &i)
fmt.Println("--------")
j := make([]int, 10, 12)
fmt.Printf("[main] j: %v, len of j: %d, cap of j: %d,ptr:%p sliceheader的地址%pn", j, len(j), cap(j), j, &j)
j1 := j[8:]
fmt.Printf("[main] j1: %v, len of j1: %d, cap of j1: %d, ptr:%p sliceheader的地址%pn", j1, len(j1), cap(j1), j1, &j1)
changeSlice2(j1) // [0 0 10] 3 4 ---为什么不对??
fmt.Printf("[main] j1: %v, len of j1: %d, cap of j1: %d, ptr:%p sliceheader的地址%pn", j1, len(j1), cap(j1), j1, &j1)
fmt.Println(j)
fmt.Printf("[main] j: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", j, len(j), cap(j), j, &j)
}
func changeSlice(s1 []int) {
fmt.Printf("[changeSlice] s1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", s1, len(s1), cap(s1), s1, &s1)
s1[0] = -1
fmt.Printf("[changeSlice] s1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", s1, len(s1), cap(s1), s1, &s1)
}
func changeSlice2(s1 []int) {
fmt.Printf("[changeSlice2] s1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", s1, len(s1), cap(s1), s1, &s1)
s1 = append(s1, 10)
fmt.Printf("[changeSlice2] s1: %v len:%d cap:%d ptr:%p sliceheader的地址%pn", s1, len(s1), cap(s1), s1, &s1)
}
输出为:
[main] i: [0 0 0 0 0 0 0 0 0 0] len:10 cap:12 ptr:0x1400010e060 sliceheader的地址0x1400011a030
[main] i1: [0 0] len:2 cap:4 ptr:0x1400010e0a0 sliceheader的地址0x1400011a078
[changeSlice] s1: [0 0] len:2 cap:4 ptr:0x1400010e0a0 sliceheader的地址0x1400011a0c0
[changeSlice] s1: [-1 0] len:2 cap:4 ptr:0x1400010e0a0 sliceheader的地址0x1400011a0c0
[main] i1: [-1 0] len:2 cap:4 ptr:0x1400010e0a0 sliceheader的地址0x1400011a078
[0 0 0 0 0 0 0 0 -1 0]
[main] i: [0 0 0 0 0 0 0 0 -1 0] len:10 cap:12 ptr:0x1400010e060 sliceheader的地址0x1400011a030
--------
[main] j: [0 0 0 0 0 0 0 0 0 0], len of j: 10, cap of j: 12,ptr:0x1400010e0c0 sliceheader的地址0x1400011a1b0
[main] j1: [0 0], len of j1: 2, cap of j1: 4, ptr:0x1400010e100 sliceheader的地址0x1400011a1f8
[changeSlice2] s1: [0 0] len:2 cap:4 ptr:0x1400010e100 sliceheader的地址0x1400011a240
[changeSlice2] s1: [0 10] len:2 cap:4 ptr:0x1400010e100 sliceheader的地址0x1400011a240
[main] j1: [0 10], len of j1: 2, cap of j1: 4, ptr:0x1400010e100 sliceheader的地址0x1400011a1f8
[0 0 0 0 0 0 0 0 0 10]
[main] j: [0 0 0 0 0 0 0 0 0 10] len:10 cap:12 ptr:0x1400010e0c0 sliceheader的地址0x1400011a1b0
只能说,通过索引修改切片元素,和通过append追加元素,表现完全不同:
- 因为append一定至少改变了长度(甚至也改了容量),这种操作只会影响子方法中的,不会影响原值
- 但如果是修改,子方法修改了某个索引下元素的值,父方法也会受到影响
case2: 扩容
通过 append 操作,可以在 slice 末尾,额外新增一个元素. 需要注意,这里的末尾指的是针对 slice 的长度 len 而言. 这个过程中倘若发现 slice 的剩余容量已经不足了,则会对 slice 进行扩容
当 slice 当前的长度 len 与容量 cap 相等时,下一次 append 操作就会引发一次切片扩容
切片的扩容流程源码位于 runtime/slice.go 文件的 growslice 方法当中,其中核心步骤如下:
• 倘若扩容后预期的新容量小于原切片的容量,则 panic
• 倘若切片元素大小为 0(元素类型为 struct{}),则直接复用一个全局的 zerobase 实例,直接返回
• 倘若预期的新容量超过老容量的两倍,则直接采用预期的新容量
• 倘若老容量小于 256,则直接采用老容量的2倍作为新容量
• 倘若老容量已经大于等于 256,则在老容量的基础上扩容 1/4 的比例并且累加上 192 的数值,持续这样处理,直到得到的新容量已经大于等于预期的新容量为止
• 结合 mallocgc 流程中,对内存分配单元 mspan 的等级制度,推算得到实际需要申请的内存空间大小
• 调用 mallocgc,对新切片进行内存初始化
• 调用 memmove 方法,将老切片中的内容拷贝到新切片中
• 返回扩容后的新切片
以上内容来自 你真的了解go语言中的切片吗?
append可能引发扩容,如果发生扩容(即cap发生变化),slice底层数组的内存地址就变了~
package main
import "fmt"
// append一定会改变原始slice底层数组的内存地址吗。。不一定,没有发生扩容就不需要
// https://www.zhihu.com/question/265386326/answer/2321716435
func main() {
names := make([]int, 3)
fmt.Printf("切片为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", names, len(names), cap(names), names, &names[0], &names)
fmt.Println("-------")
for i := 1; i
输出:
切片为:[]int{0, 0, 0},长度为3,容量为3,底层数组的内存地址的两种表示方式应该一致0x14000130000=0x14000130000,sliceheader的地址0x14000114030
-------
切片为:[]int{0, 0, 0},长度为3,容量为3,底层数组的内存地址的两种表示方式应该一致0x14000130000=0x14000130000,sliceheader的地址0x14000114030
切片为:[]int{0, 0, 0, 1},长度为4,容量为6,底层数组的内存地址的两种表示方式应该一致0x1400012e030=0x1400012e030,sliceheader的地址0x14000114030
切片为:[]int{0, 0, 0, 1, 2},长度为5,容量为6,底层数组的内存地址的两种表示方式应该一致0x1400012e030=0x1400012e030,sliceheader的地址0x14000114030
切片为:[]int{0, 0, 0, 1, 2, 3},长度为6,容量为6,底层数组的内存地址的两种表示方式应该一致0x1400012e030=0x1400012e030,sliceheader的地址0x14000114030
切片为:[]int{0, 0, 0, 1, 2, 3, 4},长度为7,容量为12,底层数组的内存地址的两种表示方式应该一致0x14000102060=0x14000102060,sliceheader的地址0x14000114030
-------
切片为:[]int{0, 0, 0, 1, 2, 3, 4, 5},长度为8,容量为12,底层数组的内存地址的两种表示方式应该一致0x14000102060=0x14000102060,sliceheader的地址0x14000114030
case3:由一个数组得到一个切片,以及两个切片之间更复杂的引用
ppackage main
import (
"fmt"
)
func main() {
a := [...]int{0, 1, 2, 3}
fmt.Printf("数组为:%#v,长度为%d,容量为%d,该数组的内存地址为:%p", a, len(a), cap(a), &a) // [4]int{0 1 2 3}, 4, 4, 地址a
fmt.Println()
x := a[:1]
fmt.Printf("切片x为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", x, len(x), cap(x), x, &x[0], &x) // []int{0}, 1, 4(容量为底层数组的长度),地址a (也是底层数组的地址,而不是x这个切片本身的地址)=地址a, 地址x
y := a[2:]
fmt.Printf("切片y为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", y, len(y), cap(y), y, &y[0], &y) // []int{2 3}, 2, 2(容量为2!!!对数组切一刀留前面的和留后面的对容量来说不一样), 地址a (同上例)=地址a, 地址y
x = append(x, y...)
fmt.Printf("切片x为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", x, len(x), cap(x), x, &x[0], &x) // []int{0 2 3}, 3, 4, 地址a(依然没有扩容)=地址a, 地址x
x = append(x, y...)
fmt.Printf("切片x为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", x, len(x), cap(x), x, &x[0], &x) // !!! []int{0 2 3 3 3}, 5, 8 地址b=地址b(因为扩容了,底层数组就变了),地址x !!!
/* 错误!
由上面代码可知,append(sli1,sli2...),并不等价与sli1 = append(sli1,sli2[0],sli2[1]..,sli2[最后一个元素]),而是类似(无论从最后切片的容量,还是append进去的元素的值)
for _,ele := range sli2 {
sli1 = append(sli1,ele)
}
错误!
*/
fmt.Println("--------")
fmt.Println(a, x)
}
输出:
数组为:[4]int{0, 1, 2, 3},长度为4,容量为4,该数组的内存地址为:0x140000280e0
切片x为:[]int{0},长度为1,容量为4,底层数组的内存地址的两种表示方式应该一致0x140000280e0=0x140000280e0,sliceheader的地址0x1400000c048
切片y为:[]int{2, 3},长度为2,容量为2,底层数组的内存地址的两种表示方式应该一致0x140000280f0=0x140000280f0,sliceheader的地址0x1400000c090
切片x为:[]int{0, 2, 3},长度为3,容量为4,底层数组的内存地址的两种表示方式应该一致0x140000280e0=0x140000280e0,sliceheader的地址0x1400000c048
切片x为:[]int{0, 2, 3, 3, 3},长度为5,容量为8,底层数组的内存地址的两种表示方式应该一致0x14000024500=0x14000024500,sliceheader的地址0x1400000c048
--------
[0 2 3 3] [0 2 3 3 3]
由最后一步的输出,能否认为append(sli1,sli2...)
,并不等价与sli1 = append(sli1,sli2[0],sli2[1]..,sli2[最后一个元素])
,而是类似(无论从最后切片的容量,还是append进去的元素的值)? 即类似
for _,ele := range sli2 {
sli1 = append(sli1,ele)
}
写demo试一下:
package main
import "fmt"
func main() {
sli1 := []int{0, 1}
sli2 := []int{6, 7, 8}
sli1 = append(sli1, sli2...)
fmt.Printf("%#v,cap:%dn", sli1, cap(sli1))
}
输出: []int{0, 1, 6, 7, 8},cap:6
看起来又是和sli1 = append(sli1,6,7,8)结果一致的
其实,问题出在第一次x = append(x, y...)
这一步
此时x没有扩容,和y共用一个底层数组a。 这一步把a改成了 [0 2 3 3],y也因此变成了 [3 3]
所以再第二次x = append(x, y...)
前,y就已经是 [3 3]了
所以 append(sli1,sli2…),还是等价于append(sli1,sli2[0],sli2[1]..,sli2[最后一个元素])
的
package main
import "fmt"
func main() {
a := make([]int, 1, 10)
b := append(a, 2)
//c := append(a, 3)
fmt.Println(a) // [0]
fmt.Println(b) // [0, 2]
fmt.Println(a) // 输出什么?
//fmt.Println(c)
}
输出: [0]
package main
import "fmt"
func main() {
a := make([]int, 1, 10)
b := append(a, 2)
c := append(a, 3)
fmt.Println(a) // [0]
fmt.Println(b) // 输出什么?
fmt.Println(a) // 输出什么?
fmt.Println(c) // 输出什么?
}
输出: [0 3] [0] [0 3]
package main
import "fmt"
func main() {
a := make([]int, 1, 10)
fmt.Printf("a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println("--------")
b := append(a, 2)
fmt.Printf("b为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", b, len(b), cap(b), b, &b[0], &b)
fmt.Printf("此时a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println("--------")
c := append(a, 3)
fmt.Printf("c为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", c, len(c), cap(c), c, &c[0], &c)
fmt.Printf("最后b为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", b, len(b), cap(b), b, &b[0], &b)
fmt.Printf("最后a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println(a) // [0]
fmt.Println(b) // [0, 2]
fmt.Println(a) // 输出什么?
fmt.Println(c) // 输出什么?
}
输出:
a为[]int{0},长度:1,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x14000098018
--------
b为[]int{0, 2},长度:2,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x14000098060
此时a为[]int{0},长度:1,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x14000098018
--------
c为[]int{0, 3},长度:2,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x140000980d8
最后b为[]int{0, 3},长度:2,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x14000098060
最后a为[]int{0},长度:1,容量:10,底层数组的内存地址的两种表示方式应该一致0x1400009e000=0x1400009e000,sliceheader的地址0x14000098018
[0]
[0 3]
[0]
[0 3]
package main
import "fmt"
func main() {
a := make([]int, 1, 1)
fmt.Printf("a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println("--------")
b := append(a, 2)
fmt.Printf("b为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", b, len(b), cap(b), b, &b[0], &b)
fmt.Printf("此时a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println("--------")
c := append(a, 3)
fmt.Printf("c为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", c, len(c), cap(c), c, &c[0], &c)
fmt.Printf("最后b为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", b, len(b), cap(b), b, &b[0], &b)
fmt.Printf("最后a为%#v,长度:%d,容量:%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", a, len(a), cap(a), a, &a[0], &a)
fmt.Println(a) // [0]
fmt.Println(b) // [0, 2]
fmt.Println(a) // 输出什么?
fmt.Println(c) // 输出什么?
}
输出:
a为[]int{0},长度:1,容量:1,底层数组的内存地址的两种表示方式应该一致0x140000200c8=0x140000200c8,sliceheader的地址0x1400000c048
--------
b为[]int{0, 2},长度:2,容量:2,底层数组的内存地址的两种表示方式应该一致0x140000200f0=0x140000200f0,sliceheader的地址0x1400000c090
此时a为[]int{0},长度:1,容量:1,底层数组的内存地址的两种表示方式应该一致0x140000200c8=0x140000200c8,sliceheader的地址0x1400000c048
--------
c为[]int{0, 3},长度:2,容量:2,底层数组的内存地址的两种表示方式应该一致0x14000020120=0x14000020120,sliceheader的地址0x1400000c108
最后b为[]int{0, 2},长度:2,容量:2,底层数组的内存地址的两种表示方式应该一致0x140000200f0=0x140000200f0,sliceheader的地址0x1400000c090
最后a为[]int{0},长度:1,容量:1,底层数组的内存地址的两种表示方式应该一致0x140000200c8=0x140000200c8,sliceheader的地址0x1400000c048
[0]
[0 2]
[0]
[0 3]
case4: 一次压入多个 与 多次压入一个;元素类型对扩容的影响
为什么不同类型的切片,append之后的len和cap不一样?
package main
import "fmt"
func main() {
s1 := []string{"北京", "上海", "深圳"}
fmt.Printf("len(s1):%d,cap(s1):%dn", len(s1), cap(s1))
s1 = append(s1, "广州", "成都", "重庆", "石家庄", "保定", "邢台", "张家口", "济南")
fmt.Printf("len(s1):%d,cap(s1):%dn", len(s1), cap(s1))
fmt.Println("------")
s2 := []int{1, 2, 3}
fmt.Printf("len(s2):%d,cap(s2):%dn", len(s2), cap(s2))
s2 = append(s2, 4, 5, 6, 7, 8, 9, 10, 11)
fmt.Printf("len(s2):%d,cap(s2):%dn", len(s2), cap(s2))
}
输出:
len(s1):3,cap(s1):3
len(s1):11,cap(s1):11
------
len(s2):3,cap(s2):3
len(s2):11,cap(s2):12
为什么不同类型不一样?
package main
import (
"fmt"
"unsafe"
)
func main() {
var sli []int64
// 对于未初始化的slice,使用 &sli[0]会panic
fmt.Printf("长度:%d 容量:%d 底层数组的内存地址:%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli) // 0,0,底层数组的内存地址:0x0,内存地址x
sli = append(sli, 0)
fmt.Println(sli) // [0]
fmt.Printf("长度:%d 容量:%d 底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 1,1,内存地址b=内存地址b(发生了扩容),内存地址x
fmt.Println(unsafe.Sizeof(sli)) // 24, 其中unsafe.utp指针占8字节,len和cap也都占8个字节
sli = append(sli, 1, 2, 3)
fmt.Println(sli) // [0 1 2 3]
fmt.Printf("长度:%d 容量:%d 底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 4,4,内存地址c=内存地址c(发生了扩容),内存地址x
sli = append(sli, 6, 7)
fmt.Println(sli) // [0 1 2 3 6 7]
fmt.Printf("长度:%d 容量:%d 底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 6,6,内存地址d=内存地址d(发生了扩容),内存地址x
sli = append(sli, 8, 9, 10)
fmt.Println(sli) // [0 1 2 3 6 7 8 9 10]
fmt.Printf("长度:%d 容量:%d 底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", len(sli), cap(sli), sli, &sli[0], &sli) // 9,16,内存地址e=内存地址e(发生了扩容),内存地址x
fmt.Println(unsafe.Sizeof(sli)) // 24, 其中unsafe.utp指针占8字节,len和cap也都占8个字节
}
输出:
长度:0 容量:0 底层数组的内存地址:0x0,sliceheader的地址0x1400000c048
[0]
长度:1 容量:1 底层数组的内存地址的两种表示方式应该一致0x140000200e0=0x140000200e0,sliceheader的地址0x1400000c048
24
[0 1 2 3]
长度:4 容量:4 底层数组的内存地址的两种表示方式应该一致0x14000028100=0x14000028100,sliceheader的地址0x1400000c048
[0 1 2 3 6 7]
长度:6 容量:8 底层数组的内存地址的两种表示方式应该一致0x14000024500=0x14000024500,sliceheader的地址0x1400000c048
[0 1 2 3 6 7 8 9 10]
长度:9 容量:16 底层数组的内存地址的两种表示方式应该一致0x1400001e100=0x1400001e100,sliceheader的地址0x1400000c048
24
package main
import "fmt"
func main() {
// case1
m := []int64{2, 3}
fmt.Println("len of old m is ", len(m)) // 2
fmt.Println("cap of old m is ", cap(m)) // 2
fmt.Println("")
m = append(m, 4, 5, 6)
fmt.Println("len of m is ", len(m)) //5
fmt.Println("cap of m is ", cap(m)) //! 6 如果要的容量是原来容量的两倍还要多, 那新的容量就是所要求的容量大小?(那为何是6而不是5?对于字符串和整型,表现不一样;而且为何是6?)
fmt.Println()
fmt.Println("------")
// case2
n := []int64{2, 3}
fmt.Println("len of old n is ", len(n)) //2
fmt.Println("cap of old n is ", cap(n)) //2
fmt.Println("")
fmt.Printf("切片n为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", n, len(n), cap(n), n, &n[0], &n) // []int64{2, 3}, 2, 2, 地址a=地址a,地址x
n = append(n, 4)
fmt.Printf("切片n为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", n, len(n), cap(n), n, &n[0], &n) // []int64{2, 3, 4}, 3, 4(两倍扩容), 地址b=地址b,地址x
n = append(n, 5)
fmt.Printf("切片n为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", n, len(n), cap(n), n, &n[0], &n) // []int64{2, 3, 4, 5}, 4, 4, 地址b=地址b,地址x
n = append(n, 6)
fmt.Printf("切片n为:%#v,长度为%d,容量为%d,底层数组的内存地址的两种表示方式应该一致%p=%p,sliceheader的地址%pn", n, len(n), cap(n), n, &n[0], &n) // []int64{2, 3, 4, 5, 6}, 5, 8(两倍扩容), 地址c=地址c,地址x
fmt.Println()
fmt.Println("len of n is ", len(n)) //5
fmt.Println("cap of n is ", cap(n)) //! 8 如果要的容量没有原来容量两倍大, 那就扩充到原来容量的两倍.
fmt.Println("------")
}
fmt.Println("cap of m is ", cap(m)) //! 6 如果要的容量是原来容量的两倍还要多, 那新的容量就是所要求的容量大小?(那为何是6而不是
这一步是为什么?
输出:
len of old m is 2
cap of old m is 2
len of m is 5
cap of m is 6
------
len of old n is 2
cap of old n is 2
切片n为:[]int64{2, 3},长度为2,容量为2,底层数组的内存地址的两种表示方式应该一致0x140000200e0=0x140000200e0,sliceheader的地址0x1400000c048
切片n为:[]int64{2, 3, 4},长度为3,容量为4,底层数组的内存地址的两种表示方式应该一致0x14000028100=0x14000028100,sliceheader的地址0x1400000c048
切片n为:[]int64{2, 3, 4, 5},长度为4,容量为4,底层数组的内存地址的两种表示方式应该一致0x14000028100=0x14000028100,sliceheader的地址0x1400000c048
切片n为:[]int64{2, 3, 4, 5, 6},长度为5,容量为8,底层数组的内存地址的两种表示方式应该一致0x14000024500=0x14000024500,sliceheader的地址0x1400000c048
len of n is 5
cap of n is 8
------
再如:
package main
import "fmt"
func main() {
a := []byte{1, 0}
fmt.Println("len of old a is ", len(a)) // 2
fmt.Println("cap of old a is ", cap(a)) // 2
fmt.Println("")
a = append(a, 1, 1, 1)
fmt.Println("len of a is ", len(a)) // 5
fmt.Println("cap of a is ", cap(a)) // 8
fmt.Println("------")
b := []int{23, 51}
fmt.Println("len of old b is ", len(b)) // 2
fmt.Println("cap of old b is ", cap(b)) // 2
fmt.Println("")
b = append(b, 4, 5, 6)
fmt.Println("len of b is ", len(b)) // 5
fmt.Println("cap of b is ", cap(b)) // 6
fmt.Println("------")
c := []int32{1, 23}
fmt.Println("len of old c is ", len(c)) // 2
fmt.Println("cap of old c is ", cap(c)) // 2
fmt.Println("")
c = append(c, 2, 5, 6)
fmt.Println("len of c is ", len(c)) // 5
fmt.Println("cap of c is ", cap(c)) // 6
fmt.Println("------")
type D struct {
age byte
name string
}
d := []D{
{1, "123"},
{2, "234"},
}
fmt.Println("len of old d is ", len(d)) // 2
fmt.Println("cap of old d is ", cap(d)) // 2
fmt.Println("")
d = append(d, D{4, "456"}, D{5, "567"}, D{6, "678"})
fmt.Println("len of d is ", len(d)) // 5
fmt.Println("cap of d is ", cap(d)) // 5
}
再次疑惑: 为什么不同类型的切片,append之后的len和cap不一样?
package main
import "fmt"
func main() {
m := []int64{2, 3}
fmt.Println("len of old m is ", len(m)) // 2
fmt.Println("cap of old m is ", cap(m)) // 2
fmt.Println("")
m = append(m, 4, 5, 6)
fmt.Println("len of m is ", len(m)) // 5
fmt.Println("cap of m is ", cap(m)) // 5
fmt.Println()
fmt.Println("------")
n := []int64{2, 3}
fmt.Println("len of old n is ", len(n)) // 2
fmt.Println("cap of old n is ", cap(n)) // 2
fmt.Println("")
n = append(n, 4)
n = append(n, 5)
n = append(n, 6)
fmt.Println("len of n is ", len(n)) // 5
fmt.Println("cap of n is ", cap(n)) // 8
fmt.Println("------")
}
扩容相关的逻辑在 go/src/runtime/slice.go
中的func growslice(oldPtr unsafe.Pointer, newLen, oldCap, num int, et *_type) slice
但更换版本试了下,和从1.18版本开始的cap策略变更没关系
(用1.17和1.21运行,结果是一样的)
和element size有关,跟防止overflow以及memory alignment 。ele size 还会影响new cap
不在这里roundup 到tcmalloc的块大小,其他内存也是浪费的。
在此感谢cwx老哥 (https://github.com/cuiweixie)一起研究
https://github.com/golang/go/blob/bdc6ae579aa86d21183c612c8c37916f397afaa8/src/runtime/slice.go#L211-L245
// Specialize for common values of et.Size.
// For 1 we don't need any division/multiplication.
// For goarch.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
// For powers of 2, use a variable shift.什么意思
这段注释解释了针对常见的 et.Size
值进行特殊处理的原因。
在这段代码中,et.Size
是一个表示大小的整数值。注释中提到了三种常见的情况:
- 当
et.Size
为 1 时,不需要进行除法或乘法运算。这是因为在计算机中,将一个数左移一位相当于乘以 2,右移一位相当于除以 2。因此,对于大小为 1 的情况,可以直接使用移位操作来处理,避免了除法或乘法的开销。 - 当
et.Size
等于当前架构的指针大小(goarch.PtrSize
)时,编译器会将除法或乘法运算优化为一个常数的位移操作。这是因为指针大小通常是2的幂次方,所以可以通过移位来进行高效的除法或乘法运算。 - 对于其他大小为2的幂次方的情况,使用一个可变的位移操作。这意味着将一个数左移或右移的位数是可变的,取决于
et.Size
的具体值。这种处理方式仍然利用了位移操作的高效性。
总之,这段注释是解释了为什么针对不同的 et.Size
值采取了不同的优化策略,以提高计算效率。这些优化措施是为了充分利用位移操作和特定的数学性质,从而减少除法或乘法的开销。
et.Size_不同,影响到最后cap的计算:如果是8字节的数据类型比如int,newcap = int(capmem / goarch.PtrSize); 如果是2的指数倍的,比如string(占16字节),newcap = int(capmem >> shift)
et.Size_ 即元素类型占用的内存空间,常见的如 int32,存储大小:4; int64,存储大小:8; string,存储大小:16 // string类型底层是一个指针(8字节),和一个长度字段(8字节)
详见 利用反射,探究Go语言中的数据类型
通过在源码中添加print,大致捋清了脉络:
基于1.21版本,switch case有四个优先级:
- 尺寸为1的(布尔值类型)
- 尺寸为8的(64位机器;32位的话为4,在此不考虑)如int64类型;
- 尺寸为2的指数倍的,如string类型
- default兜底
最后必然还和内存分配有关系,多级 mheap,mcentral(类似于全局队列),mcache(类似于本地队列),mspan(各种尺寸的内存各有一块)
很多个级别,涉及到向下取整,有一部分内存碎片
相关调试代码:
func growslice(oldPtr unsafe.Pointer, newLen, oldCap, num int, et *_type) slice {
oldLen := newLen - num
if raceenabled {
callerpc := getcallerpc()
racereadrangepc(oldPtr, uintptr(oldLen*int(et.Size_)), callerpc, abi.FuncPCABIInternal(growslice))
}
if msanenabled {
msanread(oldPtr, uintptr(oldLen*int(et.Size_)))
}
if asanenabled {
asanread(oldPtr, uintptr(oldLen*int(et.Size_)))
}
if newLen doublecap {
newcap = newLen
} else {
const threshold = 256
if oldCap maxAlloc
newcap = int(capmem)
case et.Size_ == goarch.PtrSize:
println("爽哥调试-走到了et.Size_ == goarch.PtrSize这里n")
lenmem = uintptr(oldLen) * goarch.PtrSize
newlenmem = uintptr(newLen) * goarch.PtrSize
capmem = roundupsize(uintptr(newcap) * goarch.PtrSize)
println("爽哥调试-此时capmem值为:", capmem)
overflow = uintptr(newcap) > maxAlloc/goarch.PtrSize
newcap = int(capmem / goarch.PtrSize)
case isPowerOfTwo(et.Size_):
println("爽哥调试-走到了isPowerOfTwo(et.Size_)这里n")
var shift uintptr
if goarch.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.TrailingZeros64(uint64(et.Size_))) & 63
} else {
shift = uintptr(sys.TrailingZeros32(uint32(et.Size_))) & 31
}
lenmem = uintptr(oldLen) (maxAlloc >> shift)
newcap = int(capmem >> shift)
capmem = uintptr(newcap) maxAlloc is needed
// to prevent an overflow which can be used to trigger a segfault
// on 32bit architectures with this example program:
//
// type T [1 maxAlloc {
panic(errorString("growslice: len out of range"))
}
var p unsafe.Pointer
if et.PtrBytes == 0 {
p = mallocgc(capmem, nil, false)
// The append() that calls growslice is going to overwrite from oldLen to newLen.
// Only clear the part that will not be overwritten.
// The reflect_growslice() that calls growslice will manually clear
// the region not cleared here.
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
} else {
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
p = mallocgc(capmem, et, true)
if lenmem > 0 && writeBarrier.enabled {
// Only shade the pointers in oldPtr since we know the destination slice p
// only contains nil pointers because it has been cleared during alloc.
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldPtr), lenmem-et.Size_+et.PtrBytes)
}
}
memmove(p, oldPtr, lenmem)
println("爽哥调试-最终的的newcap值为:", newcap, ", capmem值为:", capmem, "n")
println("爽哥调试---------------------本轮扩容结束------------------n")
return slice{p, newLen, newcap}
}
package main
import "fmt"
func main() {
println("~~~~~~~~~~开始进入用户代码:~~~~~~~~~~~~~~") // 前面Go底层会有很多调用到growslice的地方
s1 := []string{"北京", "上海", "深圳"}
println("~~~~~~~~~~aaaaaaaaaaaaa:~~~~~~~~~~~~~~")
fmt.Printf("len(s1):%d,cap(s1):%dn", len(s1), cap(s1)) // 这步会有调用growslice的行为
println("~~~~~~~~~~bbbbbbbbbbbbbb:~~~~~~~~~~~~~~")
println()
println("================正式开始:===============")
s1 = append(s1, "广州", "成都", "重庆", "石家庄", "保定", "邢台", "张家口", "济南")
println("~~~~~~~~~~cccccccccccccc:~~~~~~~~~~~~~~")
println("长度为:", len(s1), "容量为:", cap(s1))
println("~~~~~~~~~~dddddddddddddd:~~~~~~~~~~~~~~")
// fmt.Printf("len(s1):%d,cap(s1):%dn", len(s1), cap(s1))
println("------")
s2 := []int{1, 2, 3}
//fmt.Printf("len(s2):%d,cap(s2):%dn", len(s2), cap(s2))
println("长度为:", len(s2), "容量为:", cap(s2))
s2 = append(s2, 4, 5, 6, 7, 8, 9, 10, 11)
//fmt.Printf("len(s2):%d,cap(s2):%dn", len(s2), cap(s2))
println("长度为:", len(s2), "容量为:", cap(s2))
}
输出:
爽哥调试-未根据元素类型做处理前的newcap值为: 1
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 8
爽哥调试-经过一番逻辑处理后的newcap值为: 1 , capmem值为: 8
爽哥调试-最终的的newcap值为: 1 , capmem值为: 8
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 1
爽哥调试-et.Size_值为: 4
爽哥调试-走到了isPowerOfTwo(et.Size_)这里
爽哥调试-此时capmem值为: 8
爽哥调试-此时shift值为: 2
爽哥调试-经过一番逻辑处理后的newcap值为: 2 , capmem值为: 8
爽哥调试-最终的的newcap值为: 2 , capmem值为: 8
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 4
爽哥调试-et.Size_值为: 4
爽哥调试-走到了isPowerOfTwo(et.Size_)这里
爽哥调试-此时capmem值为: 16
爽哥调试-此时shift值为: 2
爽哥调试-经过一番逻辑处理后的newcap值为: 4 , capmem值为: 16
爽哥调试-最终的的newcap值为: 4 , capmem值为: 16
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 1
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 8
爽哥调试-经过一番逻辑处理后的newcap值为: 1 , capmem值为: 8
爽哥调试-最终的的newcap值为: 1 , capmem值为: 8
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 2
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 16
爽哥调试-经过一番逻辑处理后的newcap值为: 2 , capmem值为: 16
爽哥调试-最终的的newcap值为: 2 , capmem值为: 16
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 4
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 32
爽哥调试-经过一番逻辑处理后的newcap值为: 4 , capmem值为: 32
爽哥调试-最终的的newcap值为: 4 , capmem值为: 32
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 82
爽哥调试-et.Size_值为: 16
爽哥调试-走到了isPowerOfTwo(et.Size_)这里
爽哥调试-此时capmem值为: 1408
爽哥调试-此时shift值为: 4
爽哥调试-经过一番逻辑处理后的newcap值为: 88 , capmem值为: 1408
爽哥调试-最终的的newcap值为: 88 , capmem值为: 1408
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 8
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 64
爽哥调试-经过一番逻辑处理后的newcap值为: 8 , capmem值为: 64
爽哥调试-最终的的newcap值为: 8 , capmem值为: 64
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 1
爽哥调试-et.Size_值为: 16
爽哥调试-走到了isPowerOfTwo(et.Size_)这里
爽哥调试-此时capmem值为: 16
爽哥调试-此时shift值为: 4
爽哥调试-经过一番逻辑处理后的newcap值为: 1 , capmem值为: 16
爽哥调试-最终的的newcap值为: 1 , capmem值为: 16
爽哥调试---------------------本轮扩容结束------------------
~~~~~~~~~~开始进入用户代码:~~~~~~~~~~~~~~
~~~~~~~~~~aaaaaaaaaaaaa:~~~~~~~~~~~~~~
爽哥调试-未根据元素类型做处理前的newcap值为: 1
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 8
爽哥调试-经过一番逻辑处理后的newcap值为: 1 , capmem值为: 8
爽哥调试-最终的的newcap值为: 1 , capmem值为: 8
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 8
爽哥调试-et.Size_值为: 1
爽哥调试-走到了et.Size_ == 1这里
爽哥调试-此时capmem值为: 8
爽哥调试-经过一番逻辑处理后的newcap值为: 8 , capmem值为: 8
爽哥调试-最终的的newcap值为: 8 , capmem值为: 8
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 16
爽哥调试-et.Size_值为: 1
爽哥调试-走到了et.Size_ == 1这里
爽哥调试-此时capmem值为: 16
爽哥调试-经过一番逻辑处理后的newcap值为: 16 , capmem值为: 16
爽哥调试-最终的的newcap值为: 16 , capmem值为: 16
爽哥调试---------------------本轮扩容结束------------------
爽哥调试-未根据元素类型做处理前的newcap值为: 32
爽哥调试-et.Size_值为: 1
爽哥调试-走到了et.Size_ == 1这里
爽哥调试-此时capmem值为: 32
爽哥调试-经过一番逻辑处理后的newcap值为: 32 , capmem值为: 32
爽哥调试-最终的的newcap值为: 32 , capmem值为: 32
爽哥调试---------------------本轮扩容结束------------------
len(s1):3,cap(s1):3
~~~~~~~~~~bbbbbbbbbbbbbb:~~~~~~~~~~~~~~
================正式开始:===============
爽哥调试-未根据元素类型做处理前的newcap值为: 11
爽哥调试-et.Size_值为: 16
爽哥调试-走到了isPowerOfTwo(et.Size_)这里
爽哥调试-此时capmem值为: 176
爽哥调试-此时shift值为: 4
爽哥调试-经过一番逻辑处理后的newcap值为: 11 , capmem值为: 176
爽哥调试-最终的的newcap值为: 11 , capmem值为: 176
爽哥调试---------------------本轮扩容结束------------------
~~~~~~~~~~cccccccccccccc:~~~~~~~~~~~~~~
长度为: 11 容量为: 11
~~~~~~~~~~dddddddddddddd:~~~~~~~~~~~~~~
------
长度为: 3 容量为: 3
爽哥调试-未根据元素类型做处理前的newcap值为: 11
爽哥调试-et.Size_值为: 8
爽哥调试-走到了et.Size_ == goarch.PtrSize这里
爽哥调试-此时capmem值为: 96
爽哥调试-经过一番逻辑处理后的newcap值为: 12 , capmem值为: 96
爽哥调试-最终的的newcap值为: 12 , capmem值为: 96
爽哥调试---------------------本轮扩容结束------------------
长度为: 11 容量为: 12
和 你真的了解go语言中的切片吗? 最后 3.12 问题12
差不多
case5: 初始容量的确定
- 通过
s := make([]int,10)
这种方式,如果没有指定cap的值,则默认与len相同 - 也可以显式指定,可以很大,但不能比len小,否则会报
len larger than cap in make([]int)
package main
import "fmt"
func main() {
demo := make([]int, 9)
demo2 := demo
// []int{0,0,0,0,0,0,0,0,0}, 9, 9(而不是16!), 地址a, 地址x
fmt.Printf("切片demo为:%#v,长度为%d,容量为%d,底层数组的内存地址为%p,sliceheader的地址为%pn", demo, len(demo), cap(demo), demo, &demo)
// []int{0,0,0,0,0,0,0,0,0}, 9, 9, 地址a, 地址y
fmt.Printf("切片demo2为:%#v,长度为%d,容量为%d,底层数组的内存地址为%p,sliceheader的地址为%pn", demo2, len(demo2), cap(demo2), demo2, &demo2)
fmt.Println("-------")
demo3 := append(demo, 1)
// []int{0,0,0,0,0,0,0,0,0, 1}, 10, 18(为什么?!), 地址b(发生了扩容), 地址z
fmt.Printf("切片demo3为:%#v,长度为%d,容量为%d,底层数组的内存地址为%p,sliceheader的地址为%pn", demo3, len(demo3), cap(demo3), demo3, &demo3)
demo4 := append(demo3, 1, 2, 3)
// []int{0,0,0,0,0,0,0,0,0, 1,1,2,3}, 13, 18, 地址b(未扩容), 地址u
fmt.Printf("切片demo4为:%#v,长度为%d,容量为%d,底层数组的内存地址为%p,sliceheader的地址为%pn", demo4, len(demo4), cap(demo4), demo4, &demo4)
fmt.Println()
}
输出:
切片demo为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0},长度为9,容量为9,底层数组的内存地址为0x140000260f0,sliceheader的地址为0x1400000c048
切片demo2为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0},长度为9,容量为9,底层数组的内存地址为0x140000260f0,sliceheader的地址为0x1400000c060
-------
切片demo3为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},长度为10,容量为18,底层数组的内存地址为0x14000102000,sliceheader的地址为0x1400000c0d8
切片demo4为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3},长度为13,容量为18,底层数组的内存地址为0x14000102000,sliceheader的地址为0x1400000c120
为什么初始容量为9?
为什么后面扩容是18而不是16?
通过 append 操作,可以在 slice 末尾,额外新增一个元素. 需要注意,这里的末尾指的是针对 slice 的长度 len 而言. 这个过程中倘若发现 slice 的剩余容量已经不足了,则会对 slice 进行扩容
当 slice 当前的长度 len 与容量 cap 相等时,下一次 append 操作就会引发一次切片扩容
切片的扩容流程源码位于 runtime/slice.go 文件的 growslice 方法当中,其中核心步骤如下:
• 倘若扩容后预期的新容量小于原切片的容量,则 panic
• 倘若切片元素大小为 0(元素类型为 struct{}),则直接复用一个全局的 zerobase 实例,直接返回
• 倘若预期的新容量超过老容量的两倍,则直接采用预期的新容量
• 倘若老容量小于 256,则直接采用老容量的2倍作为新容量
• 倘若老容量已经大于等于 256,则在老容量的基础上扩容 1/4 的比例并且累加上 192 的数值,持续这样处理,直到得到的新容量已经大于等于预期的新容量为止
• 结合 mallocgc 流程中,对内存分配单元 mspan 的等级制度,推算得到实际需要申请的内存空间大小
• 调用 mallocgc,对新切片进行内存初始化
• 调用 memmove 方法,将老切片中的内容拷贝到新切片中
• 返回扩容后的新切片
runtime/slice.go:
newcap := oldCap
doublecap := newcap + newcap
if newLen > doublecap {
newcap = newLen
} else {
const threshold = 256
if oldCap
newcap 经过如上逻辑后,还要再根据元素类型,做一次处理。详见case4中的源码调试
package main
import "fmt"
//https://dashen.tech/2010/03/02/golang%E4%B9%8Bslice%E4%B8%AD%E7%9A%84%E5%B0%8Ftips/
// https://dashen.tech/2020/08/05/%E4%B8%A4%E4%B8%AAgolang%E5%B0%8F%E9%97%AE%E9%A2%98/
//https://dashen.tech/2021/03/01/%E4%B8%80%E4%B8%8D%E7%95%99%E7%A5%9E%E5%B0%B1%E6%8E%89%E5%9D%91/#map%E5%92%8Cslice%E5%8F%98%E9%87%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E4%BD%9C%E7%94%A8%E8%8C%83%E5%9B%B4%E9%97%AE%E9%A2%98
// 特别留意append
func main() {
demo := make([]int, 10)
demo2 := demo
// []int{0,0,0,0,0,0,0,0,0,0}, 10, 10(而不是16!), 地址a
fmt.Printf("切片demo为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", demo, len(demo), cap(demo), demo)
// []int{0,0,0,0,0,0,0,0,0,0}, 10, 10(而不是16!), 地址a
fmt.Printf("切片demo2为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", demo2, len(demo2), cap(demo2), demo2)
demo3 := append(demo, 1)
// []int{0,0,0,0,0,0,0,0,0,0,1}, 11, 20?(而不是16!), 地址b(发生了扩容)
fmt.Printf("切片demo3为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", demo3, len(demo3), cap(demo3), demo3)
demo4 := append(demo3, 1, 2, 3)
// []int{0,0,0,0,0,0,0,0,0,0,1,1,2,3}, 14, 20(而不是16!), 地址b(未发生扩容)
fmt.Printf("切片demo4为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", demo4, len(demo4), cap(demo4), demo4)
fmt.Println()
fmt.Println("---------------------")
// 对于这种sli2 = append(sli1,6,6,6),如果没发生扩容,sli1和sli2底层数组一样
// 对于sli1 = append(sli,6,6), sli2 = append(sli,8,8),即便容量一样,sli1和sli2底层数组也不一样..
//var sli []int
//sli := make([]int, 0)
sli := make([]int, 11)
// []int{0,0,0,0,0,0,0,0,0,0,0}, 11, 11(而不是16!), 地址c
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli1 := append(sli, 1)
// []int{0,0,0,0,0,0,0,0,0,0,0,1}, 12, 22(而不是16!), 地址d(发生了扩容)
fmt.Printf("[sli1] %v len:%d cap:%d ptr:%pn", sli1, len(sli1), cap(sli1), sli1)
fmt.Println()
// []int{0,0,0,0,0,0,0,0,0,0,0}, 11, 11(而不是16!), 地址c
fmt.Printf("此时切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
// []int{0,0,0,0,0,0,0,0,0,0,0,1,2}, 13, 22(而不是26!), 地址e(发生了扩容)
sli2 := append(sli, 1, 2)
fmt.Printf("[sli2] %v len:%d cap:%d ptr:%pn", sli2, len(sli2), cap(sli2), sli2)
fmt.Println()
// []int{0,0,0,0,0,0,0,0,0,0,0}, 11, 11(而不是16!), 地址c
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli3 := append(sli, 1, 2, 3)
// []int{0,0,0,0,0,0,0,0,0,0,0,1,2,3}, 14, 22(而不是28!), 地址f(发生了扩容)
fmt.Printf("[sli3] %v len:%d cap:%d ptr:%pn", sli3, len(sli3), cap(sli3), sli3)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli4 := append(sli, 1, 2, 3, 4)
fmt.Printf("[sli4] %v len:%d cap:%d ptr:%pn", sli4, len(sli4), cap(sli4), sli4)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli5 := append(sli, 1, 2, 3, 4, 5)
fmt.Printf("[sli5] %v len:%d cap:%d ptr:%pn", sli5, len(sli5), cap(sli5), sli5)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli6 := append(sli, 1, 2, 3, 4, 5, 6)
fmt.Printf("[sli6] %v len:%d cap:%d ptr:%pn", sli6, len(sli6), cap(sli6), sli6)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli7 := append(sli, 1, 2, 3, 4, 5, 6, 7)
fmt.Printf("[sli7] %v len:%d cap:%d ptr:%pn", sli7, len(sli7), cap(sli7), sli7)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli8 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8)
fmt.Printf("[sli8] %v len:%d cap:%d ptr:%pn", sli8, len(sli8), cap(sli8), sli8)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli9 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9)
fmt.Printf("[sli9] %v len:%d cap:%d ptr:%pn", sli9, len(sli9), cap(sli9), sli9)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli10 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
fmt.Printf("[sli10] %v len:%d cap:%d ptr:%pn", sli10, len(sli10), cap(sli10), sli10)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli11 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
fmt.Printf("[sli11] %v len:%d cap:%d ptr:%pn", sli11, len(sli11), cap(sli11), sli11)
fmt.Println()
// []int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,地址c
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli12 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
// [sli12] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12] len:23 cap:24 地址t
fmt.Printf("[sli12] %v len:%d cap:%d ptr:%pn", sli12, len(sli12), cap(sli12), sli12)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
sli13 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
fmt.Printf("[sli13] %v len:%d cap:%d ptr:%pn", sli13, len(sli13), cap(sli13), sli13)
fmt.Println()
fmt.Printf("切片sli为:%#v,长度为%d,容量为%d,底层数组的内存地址为%pn", sli, len(sli), cap(sli), sli)
}
输出:
切片demo为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为10,容量为10,底层数组的内存地址为0x140000ba000
切片demo2为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为10,容量为10,底层数组的内存地址为0x140000ba000
切片demo3为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},长度为11,容量为20,底层数组的内存地址为0x140000c2000
切片demo4为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3},长度为14,容量为20,底层数组的内存地址为0x140000c2000
---------------------
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli1] [0 0 0 0 0 0 0 0 0 0 0 1] len:12 cap:22 ptr:0x140000c6000
此时切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli2] [0 0 0 0 0 0 0 0 0 0 0 1 2] len:13 cap:22 ptr:0x140000c60b0
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli3] [0 0 0 0 0 0 0 0 0 0 0 1 2 3] len:14 cap:22 ptr:0x140000c6160
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli4] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4] len:15 cap:22 ptr:0x140000c6210
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli5] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5] len:16 cap:22 ptr:0x140000c62c0
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli6] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6] len:17 cap:22 ptr:0x140000c6370
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli7] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7] len:18 cap:22 ptr:0x140000c6420
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli8] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8] len:19 cap:22 ptr:0x140000c64d0
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli9] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9] len:20 cap:22 ptr:0x140000c6580
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli10] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10] len:21 cap:22 ptr:0x140000c6630
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli11] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11] len:22 cap:22 ptr:0x140000c66e0
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli12] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12] len:23 cap:24 ptr:0x140000c8000
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
[sli13] [0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13] len:24 cap:24 ptr:0x140000c80c0
切片sli为:[]int{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},长度为11,容量为11,底层数组的内存地址为0x1400008e060
来自 golang之slice中的小tips
package main
import "fmt"
func main() {
var sli []int
sli1 := append(sli, 1)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli1, len(sli1), cap(sli1), sli1)
sli2 := append(sli, 1, 2)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli2, len(sli2), cap(sli2), sli2)
sli3 := append(sli, 1, 2, 3)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli3, len(sli3), cap(sli3), sli3)
sli4 := append(sli, 1, 2, 3, 4)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli4, len(sli4), cap(sli4), sli4)
sli5 := append(sli, 1, 2, 3, 4, 5)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli5, len(sli5), cap(sli5), sli5)
sli6 := append(sli, 1, 2, 3, 4, 5, 6)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli6, len(sli6), cap(sli6), sli6)
sli7 := append(sli, 1, 2, 3, 4, 5, 6, 7)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli7, len(sli7), cap(sli7), sli7)
sli8 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli8, len(sli8), cap(sli8), sli8)
sli9 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli9, len(sli9), cap(sli9), sli9)
sli10 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli10, len(sli10), cap(sli10), sli10)
sli11 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli11, len(sli11), cap(sli11), sli11)
sli12 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli12, len(sli12), cap(sli12), sli12)
sli13 := append(sli, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
fmt.Printf("%v len:%d cap:%d ptr:%pn", sli13, len(sli13), cap(sli13), sli13)
}
输出为:
[1] len:1 cap:1 ptr:0x140000200c8
[1 2] len:2 cap:2 ptr:0x140000200f0
[1 2 3] len:3 cap:3 ptr:0x1400001c0d8
[1 2 3 4] len:4 cap:4 ptr:0x14000028100
[1 2 3 4 5] len:5 cap:6 ptr:0x14000022270
[1 2 3 4 5 6] len:6 cap:6 ptr:0x140000222a0
[1 2 3 4 5 6 7] len:7 cap:8 ptr:0x14000024500
[1 2 3 4 5 6 7 8] len:8 cap:8 ptr:0x14000024540
[1 2 3 4 5 6 7 8 9] len:9 cap:10 ptr:0x140000260f0
[1 2 3 4 5 6 7 8 9 10] len:10 cap:10 ptr:0x14000026140
[1 2 3 4 5 6 7 8 9 10 11] len:11 cap:12 ptr:0x140000165a0
[1 2 3 4 5 6 7 8 9 10 11 12] len:12 cap:12 ptr:0x14000016600
[1 2 3 4 5 6 7 8 9 10 11 12 13] len:13 cap:14 ptr:0x1400001a230
两种不同的声明方式,对初始容量的影响
(图片来自网络)
package main
import "fmt"
func create(iterations int) []int {
a := make([]int, 0)
for i := 0; i
番外: 与append无关的一些case:
迭代过程中修改切片的值
package main
func main() {
var s = []int{1, 2, 3}
for i, n := range s {
if i == 0 {
s[1], s[2] = 8, 9
}
print(n)
}
}
输出: 189
并发写入
package main
import (
"fmt"
)
func main() {
var sli []int
for i := 0; i
加锁后:
package main
import (
"fmt"
"sync"
"time"
)
var mu sync.Mutex
func main() {
var sli []int
for i := 0; i
package main
import (
"fmt"
"sync"
"time"
)
func main() {
var sli []int
var mu sync.Mutex
for i := 0; i
把锁初始化的操作放在循环内是不行的,最后的结果一定小于100.
要放到全局,或者循环体外,只初始化一把锁,而不是n把
interface 类型的切片可能出错的点
package main
import (
"fmt"
)
func main() {
sli := []int64{1, 2, 3}
var sliIface []interface{}
for _, item := range sli {
sliIface = append(sliIface, item)
}
rs := InSliceIface(int64(2), sliIface) // 2 必须指定为int64类型,否则会当成int,最终结果为false
fmt.Println(rs)
}
func InSliceIface(ele interface{}, sli []interface{}) bool {
for _, v := range sli {
if v == ele {
return true
}
}
return false
}
泛型切片
package main
import (
"fmt"
)
func main() {
sli := []float64{1, 2, 3.14}
rs := InSlice(3.14, sli)
fmt.Println(rs)
}
func InSlice[T int | int8 | int32 | int64 | float32 | float64 | string](ele T, sli []T) bool {
for _, v := range sli {
if v == ele {
return true
}
}
return false
}
本文由mdnice多平台发布
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net