Game
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 391 Accepted Submission(s): 262
Problem Description
Bob and Alice are playing a new game. There are n boxes which have been numbered from 1 to n. Each box is either empty or contains several cards. Bob and Alice move the cards in turn. In each turn the corresponding player should choose a non-empty box A and choose another box B that B
Input
The first line contains an integer T (T
Output
For each test case, print the case number and the winner’s name in a single line. Follow the format of the sample output.
Sample Input
2
2
1 2
7
1 3 3 2 2 1 2
Sample Output
Case 1: Alice
Case 2: Bob
/*
HDU 3389 阶梯博弈
多的拿到少的上面去,满足一定条件
阶梯博弈:博弈在一列阶梯上进行,每个阶梯上放着自然数个点,
两个人进行阶梯博弈,每一步则是将一个集体上的若干个点
(>=1 )移到前面去,最后没有点可以移动的人输。
(A+B)=6k+3(k >= 0),对于两个盒子A,B可行的转移也可以想出来,
B%6==0的盒子可以转移到B%6==3的盒子里, 所以整体不变
B%6==1的盒子可以转移到B%6==2的盒子
B%6==4的盒子可以转移到B%6==5的盒子
0 -> 3 -> 0 -> 3
2 -> 1 -> 2 -> 1
5 -> 4 -> 5 -> 4
最后的1, 3, 4盒子都是不能继续转移的盒子,
首先对于每一个转移公式都是互不影响的,对于第一个转移公式我们可以发现如果当前决策者处于不利形势,
他想要挽回形式而移动x%6==3的盒子到x%6==0的盒子是完全没用的,
因为对手总是可以继续把你转移的盒子再转移回x%6==3的盒子里使得你还是处于同样的劣势,
1,3,4 的状态不能转移到其他状态; 其他每个状态皆可转移;
且位置特定, 如2->1,5->4, 6->3, 7->2, 8->1 9->6
其本质我们有N级阶梯,现在要在%3的余数间转移, 0->0, 1->2, 2->1;
其最后的结果为1, 3, 4; 那么他们的转移的步数的奇偶性也会确定,
我们只要选择步数为奇数的位置做nim博弈就行了;
而可以通过打表归纳证明得出模6为0、2、5的位置移动步数为奇,其余为偶。
*/
#include
#include
#include
using namespace std;
int main()
{
int T,cas,ans,i,x;
int n;
cas=1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ans=0;
for(i=1;i {
scanf("%d",&x);
if(i%6==0||i%6==2||i%6==5)
ans^=x;
}
printf("Case %d: ",cas++);
if(ans)
puts("Alice");
else
puts("Bob");
}
return 0;
}