问题:数据倾斜
数据倾斜就是数据的分布不平衡,某些地方特别多,某些地方又特别少,导致的在处理数据的时候,有些很快就处理完了,而有些又迟迟未能处理完,导致整体任务最终迟迟无法完成,这种现象就是数据倾斜。
针对mapreduce的过程来说就是,有多个reduce,其中有一个或者若干个reduce要处理的数据量特别大,而其他的reduce处理的数据量则比较小,那么这些数据量小的reduce很快就可以完成,而数据量大的则需要很多时间,导致整个任务一直在等它而迟迟无法完成。
跑不出来,可能是数据倾斜的问题
跑mr任务时常见的reduce的进度总是卡在99%,这种现象很大可能就是数据倾斜造成的。
问题的本质
1) key的分布不均匀或者说某些key太集中。
上面就说过,reduce的数据量大小差异过大,而reduce的数据是分区的结果,分区是对key求hash值,根据hash值决定该key被分到某个分区,进而进入到某个reduce,而如果key很集中或者相同,那么计算得到它们的hash值可能一样,那么就会被分配到同一个reduce,就会造成这个reduce所要处理的数据量过大。
2) 业务数据自身的特性。
比如某些业务数据作为key的字段本就很集中,那么结果肯定会导致数据倾斜啊。
还有其他的一些原因,但是,根本原因还是key的分布不均匀,而其他的原因就是会造成key不均匀,进而导致数据倾斜的后果,所以说根本原因是key的分布不均匀。
解决方案
简单地说数据倾斜这种现象导致的任务迟迟不能完成,耗费了太多时间,极大地影响了性能,所以我们数据倾斜的解决方案设计思路就是往如何提高性能,即如何缩短任务的处理时间这方面考虑的,而要提高性能,就要让key分布相对均衡,所以我们的终极目标就是考虑如何预处理数据才能够使得它的key分布均匀。
常见的数据倾斜处理方案:
0数据处理
如果对某个字段进行排序,此字段格式是浮点数型,并且是模型预测的,小数点位数有点多,则可能会遇到排序速度过慢,导致运行时间超长。
可以把数据进行处理,例如换排名字段,或者是对数据进行乘法+截断处理。
1 设置参数
1)设置hive.map.aggr=true //开启map端部分聚合功能,就是将key相同的归到一起,减少数据量,这样就可以相对地减少进入reduce的数据量,在一定程度上可以提高性能,当然,如果数据的减少量微乎其微,那对性能的影响几乎没啥变化。
2)设置hive.groupby.skewindata=true //如果发生了数据倾斜就可以通过它来进行负载均衡。当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的服务器托管数据结果按照Key 分布到 Reduce 中(这个过程是按照key的hash值进行分区的,不同于mr job1的随机分配,这次可以保证相同的Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。所以它主要就是先通过第一个mr job将key随机分配到reduce,使得会造成数据倾斜的key可能被分配到不同的reduce上,从而达到负载均衡的目的。到第二个mr job中,因为第一个mr job已经在reduce中对这些数据进行了部分聚合(就像单词统计的例子,a这个字母在不同的reduce中,已经算出它在每个reduce中的个数,但是最终的总的个数还没算出来,那么就将它传到第二个mr job,这样就可以得到总的单词个数),所以这里直接进行最后的聚合就可以了。
3)hive.exec.reducers.bytes.per.reducer=1000000000 (单位是字节)
每个reduce能够处理的数据量大小,默认服务器托管是1G
2 sql语句优化
需要处理一些共性的数据,过滤掉为空字符串的,null的数据
1)进行表的join这种业务操作时,经常会产生数据倾斜。
原因就是这些业务数据本就存在key会分布不均匀的风险,所以我们join时不能使用普通的join(reduce端join)或者可以使用普通join,但是是优化后的。
大表的join
方法1:(普通join)
select * from log a join users b on (a.user_id is not null and a.user_id = b.user_id );
这是属于表的内连接的,两张表不满足条件的记录都不保留。
方法2:检测到user_id是null时给它赋予一个新值(这个新值由一个字符串(比如我自己给它定一个 hive)加上一个随机数组成),这样就可以将原来集中的key分散开来,也避免了数据倾斜的风险。
select * from log a join users b on case when a.user_id is null then concat(‘hive’,rand() ) else a.user_id end = b.user_id;
hive的优化还有其他方面的,例如where子句优化:
select * from a left outer join b on (a.key=b.key) where a.date=’2017-07-11′ and b.date=’2017-07-11′;
这是一个左外连接。
这个sql语句执行的结果是:得到的结果是表a与表b的连接表,且表中的记录的date都是’2017-07-11’。
而这个sql语句的执行过程是:逐条获取到a表的记录,然后扫描b表,寻找字段key值为a.key的记录,找到后将b表的这条记录连接到a表上,然后判断连接后的这条记录是否满足条件a.date=’2017-07-11′ and b.date=’2017-07-11’,如果满足,则显示,否则,丢弃。
将刚才的where限制条件直接放到on里面,那么就变成了满足这三个条件才会进行连接,不满足的直接过滤掉,就像上面所说的,少了无效连接那一步,就相对地节约了时间,如果这样的无效连接的记录很多的话,那么采用这种改进版的方案无疑能够较大程度地提高性能。
select * from a left outer join b on (a.key=b.key and a.date=’2017-07-11′ and b.date=’2017-07-11’);
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
问题一: 集群部署一主一备,初始化操作没有问题,有两个namenode,再次重启显示只有node01有namenode 原因:Journalde服务需要在启动启动hdfs和yarn前再次启动 再次启动步骤: 1.启动3台节点的zookeeper,在3台节点分别…