前言
简单来讲I/O多路复用就是用一个进程来监听多个文件描述符(fd),我们将监听的fd通过系统调用注册到内核中,如果有一个或多个fd可读或可写,内核会通知应用程序来对这些fd做读写操作,select、poll、epoll都是用于处理此类问题的系统API,只不过注册和调用的方式略有不同。
例如telnet命令的操作,telnet命令从shell读入数据然后写到socket fd上,同时也需要从socket fd上读数据写到shell上。telnet server需要从socket读出命令并发送给shell,再将命令执行结果返回给telnet客户端。此时对于telnet命令来说,需要接收用户输入和sockfd的输入,也需要输出给用户和socket fd,这两种输入和输出是无序的,不能单纯的阻塞某一个读操作,如何处理这种场景?
- 将两个read fd设置为非阻塞,然后轮询两个read fd,如果第一个收到数据,则处理,之后再看第二个read fd是否有数据需要读取,如此往复。
- 使用多进程或者多线程,将用户输入和输出到sockfd作为一条通道。将sockfd输入和输出给用户作为一条通道。
这样父进程读入用户数据后会发送给socketfd到telenetd,子进程读入telnetd数据后发送给用。当用户终止父进程时,需要发送信号给子进程。当子进I/O结束终止时,父进程也需要接收子进程的结束信号。使用多线程同样需要一些复杂的线程间同步操作。
- 异步I/O的方式,对两个read fd使用不同的信号,使用不同的处理函数处理。
以上三种方法在读写连接少的时候没什么问题,当一个server进程需要维护成千上万条通信连接时就会出问题。第1种会无端浪费cpu,第2种就算使用线程进程池来避免上下文切换的开销,当连接数量过多的时候,会占用大量的内存,第3种使用异步I/O显然信号类型肯定是不够用的。所以为了应对此类问题,有了I/O多路复用的技术。
- 使用select、poll、epoll,将两个read fd注册到内核,I/O多路复用会阻塞直到有read请求过来,然后返回通知应用,应用针对不同的描述符进行不同的操作。这样可以做到在一个进程中监听并处理多个描述符,再搭配线程池使用,则可以尽量的减少cpu和内存的使用,自然可以维护更多的连接。
select
先看一下select的创建函数
#include
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
// 监听描述符数目
// readfds、writefds、exceptfds表示可读、可写、异常事件对应的fd
// timeout表示select阻塞多长时间后返回,NULL为一直阻塞、0为立即返回、或指定超时时间
/*
返回值:
0表示超时时间内没有就绪的fds
成功时返回就绪fds总数(读、写、异常)
失败返回-1并设置errno,如果select等待期间被信号中断则立即返回-1并设置errno为EINTR
*/
-
fd_set
是一个字节数组,每一位标识一个fd。所以通常nfds设置为最大的fd的值+1,在sys/selct.h
中可以找到/* Number of descriptors that can fit in anfd_set'. */值为
#define __FD_SETSIZE 1024,系统默认单个进程打开最大fd数量
ulimit -n`为1024,所以select默认最大只能监听1024个fd。
select通过以下四个宏来对fd_set置位:
void FD_CLR(int fd, fd_set *set); // 清除fd_set中的fd位
int FD_ISSET(int fd, fd_set *set); // 确认fd是否在fd_set中开启,非0值为开启,0为关闭
void FD_SET(int fd, fd_set *set); // 开启fd在fd_set中的位
void FD_ZERO(fd_set *set); // 清除fd_set的所有位
demo
我们可以使用select的read_fds和exception_fds来接收普通数据和带外数据
#include
#include
#include
#include
#include
#include
#include
#include
#define BUFFERSIZE 1024
using namespace std;
int main(int argc, char *argv[]) {
if (argc
客户端截取部分发送内容
const char *oob_data = "abc";
const char *normal_data = "123";
send(sockfd, normal_data, strlen(normal_data), 0);
send(sockfd, oob_data, strlen(oob_data), MSG_OOB);
send(sockfd, normal_data, strlen(normal_data), 0);
send(sockfd, normal_data, strlen(normal_data), 0);
send(sockfd, normal_data, strlen(normal_data), 0);
运行结果如下,成功的接收到带外数据并处理:
socket与I/O事件触发
socket fd可读事件
- 内核接收缓冲区中字节数大于等于SO_RCVLOWAT值(通过
getsockopt
和setsockopt
获取设置),socket可读,recv大于0。对端关闭连接,recv等于0。如果没有资源这次读取不成功recv返回小于0,并且错误码为EAGIN或EWOULDBLOCK errno,这种不算是错误,或许下次读取就可以成功。 - socket listenfd有新的连接请求
- socket上有未处理的错误,通过getsockopt读取和清除错误
socket fd可写事件
- 内核发送缓冲区空间大于等于SO_SNDLOWAT可无阻塞写,send返回大于0
- 如果该socket fd已经关闭,再执行写会触发SIGPIPE信号
- connect连接成功或超时失败
- socket上有未处理的错误,通过getsockopt读取和清除错误
socket fd异常事件
- socket上接收到带外数据
poll
poll较select做出了改进,select使用bitmap来监视fds,而poll使用pollfd结构的数组来监视fds,突破了fds数量的限制,通过结构体将fd与events绑定,可以监视更多类型的事件
struct pollfd {
int fd; /* file descriptor */
short events; /* requested events 注册的事件*/
short revents; /* returned events 实际发生的事件*/
};
常用事件类型
- POLLIN:数据可读
- POLLOUT:数据可写
- POLLRDHUP:TCP连接被对端关闭,或者对端关闭了写操作
- POLLERR:poll发生错误
- POLLHUP:管道写端关闭,读端fd收到POLLHUP事件
- POLLINVAL:fd没有打开
poll的创建函数
int poll(struct pollfd *fds, nfds_t nfds, int timeout)
// fds 是pollfd结构类型的数组
// nfds 指定fds的大小
// timeout 超时时间,-1阻塞,0立即返回
/*
返回值:
0表示超时时间内没有就绪的fds
成功时返回就绪fds总数(读、写、异常)
失败返回-1并设置errno,如果select等待期间被信号中断则立即返回-1并设置errno为EINTR
*/
demo
监听两个文件的写入,输出到标准输出
#include
#include
#include
#include
#include
#include
#define BUFFERSIZE 1024
using namespace std;
// 存放pollfd结构数组
pollfd fds[2];
void setnonblocking(int fd) {
int old_fd_option = fcntl(fd, F_GETFL);
int new_fd_option = O_NONBLOCK | old_fd_option;
fcntl(fd, F_SETFL, new_fd_option);
}
int main(int argc, char *argv[]) {
if (argc 0) {
cout
- 新建文件1.txt和2.txt
- 运行server,另起终端随机在1.txt和2.txt上使用echo追加写入内容
server端输出
epoll
epoll与select和poll有很大的差异,epoll将需要监视的fd放入内核的红黑树表中,通过epoll_ctl
函数来添加或删除该表中需要监视的fd,只复制已经就绪的fd集合返回给应用。
- 一方面无需像使用select/poll每次调用都将整个fd集传递给它们。
- 另一方面在使用的时候应用遍历的都是事件就绪的fd。
创建epoll:
int epoll_create(int size);
// size:提示内核事件表的大小,不是硬限制
// 返回一个fd,所有其他的函数都操作该fd
操作事件:
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
// epfd:epoll_create返回的fd
/* op:
EPOLL_CTL_ADD 添加fd到epfd,事件集合为event
EPOLL_CTL_MOD 修改epfd中的fd事件,事件集合为event
EPOLL_CTL_DEL 从epfd中删除fd,忽略event参数,一般设为NULL
*/
// 返回值:成功返回0,失败返回-1设置errno
获取就绪的事件集
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
// epfd:epoll_create返回的fd
// events:就绪的事件数组,应用遍历它
// maxevents:指定最大监听的事件数目
// timeout:超时时间,-1阻塞,0立即返回
// 返回值:成功返回就绪fd的数目,失败返回-1设置errno
LT和ET模式
epoll支持两个模式LT(Level Trigger)和ET(Edge Trigger)
- LT模式可以认为是高效一点的poll,只要fd上有事件发生就会不断的唤醒通知,拿读来说,应用不需要每次都将fd的缓存读完,epoll会不断的通知应用来读取
- ET模式当触发事件时,只进行一次唤醒通知,不管此次应用是否将fd缓存读完,后续都不会再唤醒,直到新的事件被触发,这样大大减少了同一个事件触发唤醒的次数,减少了
epoll_wait
系统调用的次数(上下文切换),所以这种模式也被称为高效的epoll模式
EPOLLONESHOT事件
我们说ET模式对于一个事件只会触发一次,如果是多线程的并发场景下,当前线程在读完socket上的数据后开始处理这些数据,在处理期间有新的数据到来,此时唤醒新的线程来处理新到来的数据,出现了两个线程操作同一fd的情况,可能会出现未知错误。EPOLLONESHOT事件可以保证,操作系统对该fd只触发一种事件,并且只触发一次,这样任何时刻只能有一个线程操作该fd。这样也会导致下次该事件无法触发,所以线程处理完毕后应当使用epoll_ctl
重置EPOLLONESHOT。
demo
server的主线程与客户端建立TCP连接,建立好连接后将连接fd注册到epoll,如果该链接有请求数据就启动新的线程来处理。使用telnet作为客户端对比不使用EPOLLONESHOT和使用EPOLLONESHOT后server的行为
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define MAX_EVENT_NUMBER 1024
#define BUFFERSIZE 1024
static int epollfd = 0;
void setnonblocking(int fd) {
int old_fd_option = fcntl(fd, F_GETFL);
int new_fd_option = old_fd_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_fd_option);
}
void register_epoll(int epollfd, int fd, bool newfd = false,
bool oneshot = false) {
epoll_event events;
events.data.fd = fd;
events.events = EPOLLIN | EPOLLET; // 读事件、ET工作模式
if (oneshot) {
events.events |= EPOLLONESHOT; // 使用EPOLLONESHOT
}
if (newfd) {
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &events);
} else {
epoll_ctl(epollfd, EPOLL_CTL_MOD, fd, &events);
}
setnonblocking(fd);
}
void *handle_connect(void *arg) {
pid_t tid = gettid();
int connfd = *((int *)arg);
cout
使用EPOLLONESHOT事件:
- telnet1发送c1 h1, 发送c1 h2
- telnet2发送c2 h1
- telnet3发送c1 h3
server使用线程102108逐个处理 connect5的请求,对于connect6使用线程102109单独处理
不使用EPOLLONESHOT事件:
修改代码
注释掉
// register_epoll(epollfd, connfd, false,
// true); // 重置该连接fd的EPOLLONESHOT
不给connfd使用EPOLLONESHOT
// 新的连接使用EPOLLONESHOT属性
// register_epoll(epollfd, connfd, true, true);
// 新的连接不使用EPOLLONESHOT属性
register_epoll(epollfd, connfd, true, false);
编译运行
- telnet1发送c1 h1, 发送c1 h2
- telnet2发送c2 h1
- telnet3发送c1 h3
线程102137处理connfd 5,sleep的期间内,connfd5有新的请求到来,可以看到新起了线程来处理connfd5的新消息
对比总结
select
- 事件集的传入与使用:select没有fd与event的绑定结构,只是给可读、可写、异常传递一个fd集合,不能处理更多的事件类型,将fd_set拷贝到内核中,内核遍历fd_set,如果有事件发生,内核对fd_set直接修改,将没有事件的fd位置空,拷贝到应用,因此每次调用select都需要重新设置fd_set。应用需要再次完全遍历fd_set,通过
FD_ISSET
判断事件是否就绪。(两次fd_set拷贝,两次fd_set遍历) - 效率:内核处理事件集时间复杂度为O(n),应用索引就绪文件描述符的时间复杂度为O(n)
- 工作模式:LT
- 最大可监视fd数:受限于
__FD_SETSIZE 1024
宏,可修改该值重新编译内核来增加select可监视fd的数目 - 可移植性:支持windows、linux
poll
- 事件集的传入与使用:poll将fd与event绑定在pollfd结构中,将pollfd数组复制到内核,触发事件时内核会修改revents,再将数组复制回用户态,因此无需重置需要监视的成员。但是用户使用遍历的时候仍然需要遍历整个数组成员,判断传入的events是否与返回的revents相同
- 效率:内核处理事件集时间复杂度为O(n),应用索引就绪文件描述符的时间复杂度为O(n)
- 工作模式:LT
- 最大可监视fd数:系统支持的最大fd数目,
/proc/sys/fs/file-max/
- 可移植性:支持windows、linux
epoll
- 事件集的传入与使用:epoll在内核中维护一个红黑树结构的事件表,绑定fd与events,这个事件表通服务器托管网过
epoll_create
创建,返回一个fd来使用,维护着所有需要监视的fd。通过系统调用epoll_ctl
对fd对应的事件进行增、删、改。应用代码调用epoll_wait
来获取已经触发事件的fd,epoll会将就绪的epoll_event结构的fd放入数组并拷贝到用户态,应用直接遍历该数组即可拿到每一个触发事件的fd - 效率:内核处理事件集时间复杂度为O(logn)(操作红黑树),应用索引就绪文件描述符的时间复杂度为O(1)
- 工作模式:LT或者ET
- 最大可监视fd数:系统支持的最大fd数目,
/proc/sys/fs/file-max/
- 可移植性:仅支持linux
学习自:
《Linux高性能服务器编程》
《UNIX环境高级编程》
《UNIX系统编程》
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
相关推荐: VB.net读写S50/F08IC卡,修改卡片密码控制位源码
本示例使用设备:Android Linux RFID读写器NFC发卡器WEB可编程NDEF文本/智能海报/-淘宝网 (taobao.com) 函数声明 Module Module1 ‘读卡函数声明 Public Declare Function piccrea…