1、小故事
故事角色
-
老王 – JVM
-
小南 – 线程
-
小女 – 线程
-
房间 – 对象
-
房间门上 – 防盗锁 – Monitor-重量级锁
-
房间门上 – 小南书包 – 轻量级锁
-
房间门上 – 刻上小南大名 – 偏向锁 -对象专属于某个线程使用
-
批量重刻名 – 一个类的偏向锁撤销到达 20 阈值 -批量重偏向
-
不能刻名字 – 批量撤销该类对象的偏向锁,设置该类不可偏向
但是,很多情况下没人跟他来竞争房间的使用权。小女是要用房间,但使用的时间上是错开的,小南白天用,小女晚上用。每次上锁太麻烦了,有没有更简单的办法呢?
小南和小女商量了一下,约定不锁门了,而是谁用房间,谁把自己的书包挂在门口,但他们的书包样式都一样,因此每次进门前得翻翻书包,看课本是谁的,如果是自己的,那么就可以进门,这样省的上锁解锁了。万一书包不是自己的,那么就在门外等,并通知对方下次用锁门的方式。
后来,小女回老家了,很长一段时间都不会用这个房间。小南每次还是挂书包,翻书包,虽然比锁门省事了,但仍然觉得麻烦。
于是,小南干脆在门上刻上了自己的名字:【小南专属房间,其它人勿用】,下次来用房间时,只要名字还在,那么说明没人打扰,还是可以安全地使用房间。如果这期间有其它人要用这个房间,那么由使用者将小南刻的名字擦掉,升级为挂书包的方式。
同学们都放假回老家了,小南就膨胀了,在 20 个房间刻上了自己的名字,想进哪个进哪个。后来他自己放假回老家了,这时小女回来了(她也要用这些房间),结果就是得一个个地擦掉小南刻的名字,升级为挂书包的方式。老王觉得这成本有点高,提出了一种批量重刻名的方法,他让小女不用挂书包了,可以直接在门上刻上自己的名字
后来,刻名的现象越来越频繁,老王受不了了:算了,这些房间都不能刻名了,只能挂书包—-设置该类不可偏向
节码指令中有所体现
2.1 轻量级锁
轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。
如果有竞争,轻量级锁会升级为重量级锁。
轻量级锁对使用者是透明的,即语法仍然是 synchronized
假设有两个方法同步块,利用同一个对象加锁
static final Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块 A
method2();
}
}
public static void method2() {
synchronized( obj ) {
// 同步块 B
}
}
-
创建锁记录(Lock Record)对象,每个线程都的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的 Mark Word
-
让锁记录中 Object reference 指向锁对象,并尝试用 cas(compare and swap,原子性) 替换 Object 的 Mark Word,将 Mark Word 的值存入锁记录
-
如果 cas(compare and swap,原子性) 替换成功,对象头中存储了
锁记录地址和状态 00
,表示由该线程给对象加锁,这时图示如下
-
如果 cas(compare and swap,原子性) 失败,有两种情况
-
如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程
-
如果是自己执行了 synchronized 锁重入,那么再添加一条 Lock Record 作为重入的计数,如示例代码
-
-
当退出 synchronized 代码块(解锁时)如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重入计数减一(锁重入的数量)
-
当退出 synchronized 代码块(解锁时)锁记录的值不为 null,这时使用 cas(compare and swap,原子性) 将 Mark Word 的值恢复给对象头
-
成功,则解锁成功
-
失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程
-
2.2 锁膨胀
如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。
static Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块
}
}
-
当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁
-
这时 Thread-1 加轻量级锁失败,进入锁膨胀流程
-
即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址
-
然后自己进入 Monitor 的 EntryList BLOCKED
-
-
当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程
2.3 自旋优化
重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。
自旋重试成功的情况
线程 1 (core 1 上) | 对象 Mark | 线程 2 (core 2 上) |
---|---|---|
– | 10(重量锁) | – |
访问同步块,获取 monitor | 10(重量锁)重量锁指针 | – |
成功(加锁) | 10(重量锁)重量锁指针 | – |
执行同步块 | 10(重量锁)重量锁指针 | – |
执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取 monitor |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行完毕 | 10(重量锁)重量锁指针 | 自旋重试 |
成功(解锁) | 01(无锁) | 自旋重试 |
– | 10(重量锁)重量锁指针 | 成功(加锁) |
– | 10(重量锁)重量锁指针 | 执行同步块 |
– | … | … |
线程2自旋重试3次成功加锁,这样就不会陷入阻塞。
自旋重试失败的情况
线程 1(core 1 上) | 对象 Mark | 线程 2(core 2 上) |
---|---|---|
– | 10(重量锁) | – |
访问同步块,获取 monitor | 10(重量锁)重量锁指针 | – |
成功(加锁) | 10(重量锁)重量锁指针 | – |
执行同步块 | 10(重量锁)重量锁指针 | – |
执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取 monitor |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
执行同步块 | 10(重量锁)重量锁指针 | 阻塞 |
– | … | … |
-
线程2一直处于自旋,最后处于阻塞状态。
-
自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
-
在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
-
Java 7 之后不能控制是否开启自旋功能
2.4 偏向锁
轻量级锁在没有竞争时(就自己这个线程),每次锁重入时仍然需要执行 CAS 操作。
Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有
例如:
static final Object obj = new Object();
public static void m1() {
synchronized( obj ) {
// 同步块 A
m2();
}
}
public static void m2() {
synchronized( obj ) {
// 同步块 B
m3();
}
}
public static void m3() {
synchronized( obj ) {
// 同步块 C
}
}
2.4.1 偏向状态
回忆一下对象头格式
|--------------------------------------------------------------------|--------------------|
| Mark Word (64 bits) | State |
|--------------------------------------------------------------------|--------------------|
| unused:25 | hashcode:31 | unused:1 | age:4 | biased_lock:0 | 01 | Normal | // 正常
|--------------------------------------------------------------------|--------------------| // 偏向锁
| thread:54 | epoch:2 | unused:1 | age:4 | biased_lock:1 | 01 | Biased |
|--------------------------------------------------------------------|--------------------|
| ptr_to_lock_record:62 | 00 | Lightweight Locked | // 轻量级
|--------------------------------------------------------------------|--------------------| // 重量级
| ptr_to_heavyweight_monitor:62 | 10 | Heavyweight Locked |
|--------------------------------------------------------------------|--------------------|
| | 11 | Marked for GC |
|--------------------------------------------------------------------|--------------------|
一个对象创建时:
-
如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的 thread、epoch、age 都为 0
-
偏向锁是默认是延迟的,不会在程序启动时立即生效,可以sleep 4s后查看,如果想避免延迟,可以加 VM 参数
-XX:BiasedLockingStartupDelay=0
来禁用延迟 -
如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、age 都为 0,第一次用到 hashcode 时才会赋值
1) 测试延迟特性
2) 测试偏向锁
class Dog {}
利用 jol 第三方工具来查看对象头信息
pom文件
org.openjdk.jol
jol-core
0.10
代码(注意这一小节的代码了解一下即可,在本机是运行不成功的,注意看输出就行了)
// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0
public static void main(String[] args) throws IOException {
Dog d = new Dog();
ClassLayout classLayout = ClassLayout.parseInstance(d);
new Thread(() -> {
log.debug("synchronized 前");
System.out.println(classLayout.toPrintableSimple(true));
synchronized (d) {
log.debug("synchronized 中");
System.out.println(classLayout.toPrintableSimple(true));
}
log.debug("synchronized 后");
System.out.println(classLayout.toPrintableSimple(true));
}, "t1").start();
}
输出
11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 //VM 参数 `-XX:BiasedLockingStartupDelay=0`后
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 // 与上面输出的区别,根据对象头格式查看
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 // 处于偏向锁,线程id不变,除非有新的竞争
注意
处于偏向锁的对象解锁后,线程 id 仍存储于对象头中
3)测试禁用
在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking
禁用偏向锁
输出
11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 三条日志后三位均不是101
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000 // 处于轻量级锁
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 恢复成正常状态
4) 测试 hashCode,添加VM 参数 -XX:BiasedLockingStartupDelay=0
来禁用延迟
-
正常状态对象一开始是没有 hashCode 的,第一次调用才生成
-
调用 hashCode 会导致偏向锁被禁用。因为处于偏向锁状态的话已经存储线程id,再去存储hashcode,空间不够,是存储不下的。所以这时候的状态会被改为正常状态。另外轻量级锁的hashcode存储在栈帧中的锁记录中,重量级锁的hashcode存储在monitor对象中,解锁时会还原。
2.4.2 撤销 – 调用对象 hashCode
调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销
-
轻量级锁会在锁记录中记录 hashCode
-
重量级锁会在 Monitor 中记录 hashCode
在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking
输出
11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
2.4.3 撤销 – 其它线程使用对象
当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁
private static void test2() throws InterruptedException {
Dog d = new Dog();
Thread t1 = new Thread(() -> {
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
// 锁住当前类对象
synchronized (TestBiased.class) {
TestBiased.class.notify();
}
// 如果不用 wait/notify 使用 join 必须打开下面的注释
// 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
/*try {
System.in.read();
} catch (IOException e) {
e.printStackTrace();
}*/
}, "t1");
t1.start();
Thread t2 = new Thread(() -> {
// 锁住当前类对象
synchronized (TestBiased.class) {
try {
TestBiased.class.wait(); // 等待t1线程
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}, "t2");
t2.start();
}
输出
[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 // 处于偏向锁
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 // t2线程还未加锁和t1状态保持一致
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 // 处于轻量级锁
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 解锁后处于不可偏向
2.4.4 撤销 – 调用 wait/notify
这种情况下也会撤销偏向锁。因为wait/notify只有重量级锁才有。会将偏向锁或者轻量级锁升级为重量级锁
public static void main(String[] args) throws InterruptedException {
Dog d = new Dog();
Thread t1 = new Thread(() -> {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
try {
d.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
}
}, "t1");
t1.start();
new Thread(() -> {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (d) {
log.debug("notify");
d.notify();
}
}, "t2").start();
}
输出
[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 // 偏向锁
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 // 加锁
[t2] - notify
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010 // 重量级锁
2.4.5 批量重偏向
如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID
当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程
private static void test3() throws InterruptedException {
Vector list = new Vector();
Thread t1 = new Thread(() -> {
for (int i = 0; i {
synchronized (list) {
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("===============> ");
for (int i = 0; i
输出
[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 // 偏向锁
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - ===============>
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 // 偏向t1锁
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 // 撤销偏向锁,升级为轻量级锁
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 // 处于不可偏向锁,也就是正常状态
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 // 第20个对象开始,全部处于偏向t2的偏向锁
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 // 批量重偏向,后面所有都处于偏向t2的偏向锁
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 25 00000000 00000000 00000000 00000000服务器托管网 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101
2.4.6 批量撤销
当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的
这里就不打印日志了,可以自行思考
static Thread t1,t2,t3;
private static void test4() throws InterruptedException {
Vector list = new Vector();
int loopNumber = 39;
t1 = new Thread(() -> {
for (int i = 0; i {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i
参考资料
2.5 锁消除
锁消除
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
static int x = 0;
@Benchmark
public void a() throws Exception {
x++;
}
@Benchmark
public void b() throws Exception {
Object o = new Object();
synchronized (o) {
x++;
}
}
}
java -jar benchmarks.jar
Benchmark Mode Samples Score Score error Units
c.i.MyBenchmark.a avgt 5 1.542 0.056 ns/op
c.i.MyBenchmark.b avgt 5 1.518 0.091 ns/op
b是有一个加锁的操作,那为什么a耗时与b耗时几乎别区别呢?是因为Java中有一个JIT(即时编译器),会对于反复执行的代码进行优化,b中o对象根本不会被共享,所以b中的synchronized是没有任何意义的,所以Java就把锁给消除了。这也是存在一个开关的,这个开关是默认开启的,下面演示下把这个开关关闭掉。
java -XX:-EliminateLocks -jar benchmarks.jar
Benchmark Mode Samples Score Score error Units
c.i.MyBenchmark.a avgt 5 1.507 0.108 ns/op
c.i.MyBenchmark.b avgt 5 16.976 1.572 ns/op
可以看到耗时有明显差距了。
锁粗化
对相同对象多次加锁,导致线程发生多次重入,可以使用锁粗化方式来优化,这不同于之前的细分锁的粒度。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net