0. 前言
在 Kubernetes
架构中,controller manager 是一个永不休止的控制回路组件,其负责控制集群资源的状态。通过监控 kube-apiserver
的资源状态,比较当前资源状态和期望状态,如果不一致,更新 kube-apiserver
的资源状态以保持当前资源状态和期望状态一致。
1. kube-controller-manager
下面从源码角度分析 kube-controller-manager
的工作方式。
kube-controller-manager
使用 Cobra 作为应用命令行框架,和 kube-scheduler
,kube-apiserver
初始化过程类似,其流程如下:
这里,简要给出初始化代码示例:
# kubernetes/cmd/kube-controller-manager/app/controllermanager.go
func NewControllerManagerCommand() *cobra.Command {
// 创建选项
s, err := options.NewKubeControllerManagerOptions()
...
cmd := &cobra.Command{
...
RunE: func(cmd *cobra.Command, args []string) error {
...
// 根据选项,创建配置
c, err := s.Config(KnownControllers(), ControllersDisabledByDefault(), ControllerAliases())
if err != nil {
return err
}
...
return Run(context.Background(), c.Complete())
},
...
}
...
}
进入 Run
函数,看 kube-controller-manager
是怎么运行的。
# kubernetes/cmd/kube-controller-manager/app/controllermanager.go
func Run(ctx context.Context, c *config.CompletedConfig) error {
...
run := func(ctx context.Context, controllerDescriptors map[string]*ControllerDescriptor) {
// 创建上下文
controllerContext, err := CreateControllerContext(logger, c, rootClientBuilder, clientBuilder, ctx.Done())
if err != nil {
logger.Error(err, "Error building controller context")
klog.FlushAndExit(klog.ExitFlushTimeout, 1)
}
// 开始控制器,这是主运行逻辑
if err := StartControllers(ctx, controllerContext, controllerDescriptors, unsecuredMux, healthzHandler); err != nil {
logger.Error(err, "Error starting controllers")
klog.FlushAndExit(klog.ExitFlushTimeout, 1)
}
// 启动 informer
controllerContext.InformerFactory.Start(stopCh)
controllerContext.ObjectOrMetadataInformerFactory.Start(stopCh)
close(controllerContext.InformersStarted)
和 kube-scheduler
类似,kube-controller-manager
也是多副本单实例运行的组件,需要 leader election
作为 leader 组件运行。这里不过多介绍,具体可参考 Kubernetes leader election 源码分析。
运行控制器管理器。首先,在 NewControllerDescriptors
中注册资源控制器的描述符。
# kubernetes/cmd/kube-controller-manager/app/controllermanager.go
func NewControllerDescriptors() map[string]*ControllerDescriptor {
register := func(controllerDesc *ControllerDescriptor) {
...
controllers[name] = controllerDesc
}
...
// register 函数注册资源控制器
register(newEndpointsControllerDescriptor())
register(newEndpointSliceControllerDescriptor())
register(newEndpointSliceMirroringControllerDescriptor())
register(newReplicationControllerDescriptor())
register(newPodGarbageCollectorControllerDescriptor())
register(newResourceQuotaControllerDescriptor())
...
return controllers
}
# kubernetes/cmd/kube-controller-manager/app/apps.go
func newReplicaSetControllerDescriptor() *ControllerDescriptor {
return &ControllerDescriptor{
name: names.ReplicaSetController,
aliases: []string{"replicaset"},
initFunc: startReplicaSetController,
}
}
每个资源控制器描述符包括 initFunc
和启动控制器函数的映射。
在 run
中 StartControllers
运行控制器。
# kubernetes/cmd/kube-controller-manager/app/controllermanager.go
func StartControllers(ctx context.Context, controllerCtx ControllerContext, controllerDescriptors map[string]*ControllerDescriptor,
unsecuredMux *mux.PathRecorderMux, healthzHandler *controllerhealthz.MutableHealthzHandler) error {
...
// 遍历获取资源控制器描述符
for _, controllerDesc := range controllerDescriptors {
if controllerDesc.RequiresSpecialHandling() {
continue
}
// 运行资源控制器
check, err := StartController(ctx, controllerCtx, controllerDesc, unsecuredMux)
if err != nil {
return err
}
if check != nil {
// HealthChecker should be present when controller has started
controllerChecks = append(controllerChecks, check)
}
}
...
return nil
}
func StartController(ctx context.Context, controllerCtx ControllerContext, controllerDescriptor *ControllerDescriptor,
unsecuredMux *mux.PathRecorderMux) (healthz.HealthChecker, error) {
...
// 获取资源控制器描述符的启动函数
initFunc := controllerDescriptor.GetInitFunc()
// 启动资源控制器
ctrl, started, err := initFunc(klog.NewContext(ctx, klog.LoggerWithName(logger, controllerName)), controllerCtx, controllerName)
if err != nil {
logger.Error(err, "Error starting controller", "controller", controllerName)
return nil, err
}
...
}
kubernetes
有多个控制器,这里以 Replicaset
控制器为例,介绍控制器是怎么运行的。
进入 Replicaset
控制器的 initFunc
函数运行控制器。
# kubernetes/cmd/kube-controller-manager/app/apps.go
func startReplicaSetController(ctx context.Conte服务器托管网xt, controllerContext ControllerContext, controllerName string) (controller.Interface, bool, error) {
go replicaset.NewReplicaSetController(
klog.FromContext(ctx),
controllerContext.InformerFactory.Apps().V1().ReplicaSets(),
controllerContext.InformerFactory.Core().V1().Pods(),
controllerContext.ClientBuilder.ClientOrDie("replicaset-controller"),
replicaset.BurstReplicas,
).Run(ctx, int(controllerContext.ComponentConfig.ReplicaSetController.ConcurrentRSSyncs))
return nil, true, nil
}
运行 initFunc
实际上运行的是 startReplicaSetController
。startReplicaSetController
启动一个 goroutine
运行 replicaset.NewReplicaSetController
和 ReplicaSetController.Run
,replicaset.NewReplicaSetController
创建了 informer
的 Eventhandler
,ReplicaSetController.Run
负责对 EventHandler
中加入队列的资源做处理。示意图如下:
首先,进入 replicaset.NewReplicaSetController
查看函数做了什么。
# kubernetes/pkg/controller/replicaset/replica_set.go
func NewReplicaSetController(logger klog.Logger, rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, kubeClient clientset.Interface, burstReplicas int) *ReplicaSetController {
...
return NewBaseController(logger, rsInformer, podInformer, kubeClient, burstReplicas,
apps.SchemeGroupVersion.WithKind("ReplicaSet"),
"replicaset_controller",
"replicaset",
controller.RealPodControl{
KubeClient: kubeClient,
Recorder: eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "replicaset-controller"}),
},
eventBroadcaster,
)
}
func NewBaseController(logger klog.Logger, rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, kubeClient clientset.Interface, burstReplicas int,
gvk schema.GroupVersionKind, metricOwnerName, queueName string, podControl controller.PodControlInterface, eventBroadcaster record.EventBroadcaster) *ReplicaSetController {
rsc := &ReplicaSetController{
GroupVersionKind: gvk,
kubeClient: kubeClient,
podControl: podControl,
eventBroadcaster: eventBroadcaster,
burstReplicas: burstReplicas,
expectations: controller.NewUIDTrackingControllerExpectations(controller.NewControllerExpectations()),
queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), queueName),
}
rsInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
rsc.addRS(logger, obj)
},
UpdateFunc: func(oldObj, newObj interface{}) {
rsc.updateRS(logger, oldObj, newObj)
},
DeleteFunc: func(obj interface{}) {
rsc.deleteRS(logger, obj)
},
})
...
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
rsc.addPod(logger, obj)
},
UpdateFunc: func(oldObj, newObj interface{})服务器托管网 {
rsc.updatePod(logger, oldObj, newObj)
},
DeleteFunc: func(obj interface{}) {
rsc.deletePod(logger, obj)
},
})
...
rsc.syncHandler = rsc.syncReplicaSet
return rsc
}
函数定义了 ReplicaSetController
和 podInformer
,负责监控 kube-apiserver
中 ReplicaSet
和 Pod
的变化,根据资源的不同变动触发对应的 Event Handler
。
接着,进入 Run
查看函数做了什么。
# kubernetes/pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) Run(ctx context.Context, workers int) {
...
// 同步缓存和 kube-apiserver 中获取的资源
if !cache.WaitForNamedCacheSync(rsc.Kind, ctx.Done(), rsc.podListerSynced, rsc.rsListerSynced) {
return
}
for i := 0; i
可以看到,rsc.syncHandler
处理队列中的资源,rsc.syncHandler
实际执行的是 ReplicaSetController.syncReplicaSet
。
理清了代码的结构,我们以一个删除 Pod
示例看 kube-controller-manager
是怎么运行的。
1.1 删除 Pod 示例
1.1.1 示例条件
创建 Replicaset
如下:
# helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
test default 1 2024-02-29 16:24:43.896757193 +0800 CST deployed test-0.1.0 1.16.0
# kubectl get replicaset
NAME DESIRED CURRENT READY AGE
test-6d47479b6b 1 1 1 10d
# kubectl get pods
NAME READY STATUS RESTARTS AGE
test-6d47479b6b-5k6cb 1/1 Running 0 9d
删除 pod 查看 kube-controller-manager
是怎么运行的。
1.1.2 运行流程
删除 pod:
# kubectl delete pods test-6d47479b6b-5k6cb
删除 pod 后,podInformer
的 Event handler
接受到 pod 的变化,调用 ReplicaSetController.deletePod
函数:
func (rsc *ReplicaSetController) deletePod(logger klog.Logger, obj interface{}) {
pod, ok := obj.(*v1.Pod)
...
logger.V(4).Info("Pod deleted", "delete_by", utilruntime.GetCaller(), "deletion_timestamp", pod.DeletionTimestamp, "pod", klog.KObj(pod))
...
rsc.queue.Add(rsKey)
}
ReplicaSetController.deletePod
将删除的 pod 加入到队列中。接着,worker 中的 ReplicaSetController.processNextWorkItem
从队列中获取删除的 pod,进入 ReplicaSetController.syncReplicaSet
处理。
func (rsc *ReplicaSetController) syncReplicaSet(ctx context.Context, key string) error {
...
namespace, name, err := cache.SplitMetaNamespaceKey(key)
...
// 获取 pod 对应的 replicaset
rs, err := rsc.rsLister.ReplicaSets(namespace).Get(name)
...
// 获取所有 pod
allPods, err := rsc.podLister.Pods(rs.Namespace).List(labels.Everything())
if err != nil {
return err
}
// Ignore inactive pods.
filteredPods := controller.FilterActivePods(logger, allPods)
// 获取 replicaset 下的 pod
// 这里 pod 被删掉了,filteredPods 为 0
filteredPods, err = rsc.claimPods(ctx, rs, selector, filteredPods)
if err != nil {
return err
}
// replicaset 下的 pod 被删除
// 进入 rsc.manageReplicas
var manageReplicasErr error
if rsNeedsSync && rs.DeletionTimestamp == nil {
manageReplicasErr = rsc.manageReplicas(ctx, filteredPods, rs)
}
...
}
继续进入 ReplicaSetController.manageReplicas
:
func (rsc *ReplicaSetController) manageReplicas(ctx context.Context, filteredPods []*v1.Pod, rs *apps.ReplicaSet) error {
diff := len(filteredPods) - int(*(rs.Spec.Replicas))
...
if diff
当 filteredPods
小于 Replicaset 中 spec
域定义的 Replicas
时,进入 rsc.podControl.CreatePods
创建 pod:
func (r RealPodControl) CreatePods(ctx context.Context, namespace string, template *v1.PodTemplateSpec, controllerObject runtime.Object, controllerRef *metav1.OwnerReference) error {
return r.CreatePodsWithGenerateName(ctx, namespace, template, controllerObject, controllerRef, "")
}
func (r RealPodControl) CreatePodsWithGenerateName(ctx context.Context, namespace string, template *v1.PodTemplateSpec, controllerObject runtime.Object, controllerRef *metav1.OwnerReference, generateName string) error {
...
return r.createPods(ctx, namespace, pod, controllerObject)
}
func (r RealPodControl) createPods(ctx context.Context, namespace string, pod *v1.Pod, object runtime.Object) error {
...
newPod, err := r.KubeClient.CoreV1().Pods(namespace).Create(ctx, pod, metav1.CreateOptions{})
...
logger.V(4).Info("Controller created pod", "controller", accessor.GetName(), "pod", klog.KObj(newPod))
...
return nil
}
接着,回到 ReplicaSetController.syncReplicaSet
:
func (rsc *ReplicaSetController) syncReplicaSet(ctx context.Context, key string) error {
...
newStatus := calculateStatus(rs, filteredPods, manageReplicasErr)
updatedRS, err := updateReplicaSetStatus(logger, rsc.kubeClient.AppsV1().ReplicaSets(rs.Namespace), rs, newStatus)
if err != nil {
return err
}
...
}
虽然 pod 重建过,不过这里的 filteredPods
是 0,updateReplicaSetStatus
会更新 Replicaset 的当前状态为 0。
更新了 Replicaset
的状态又会触发 Replicaset
的 Event Handler
,从而再次进入 ReplicaSetController.syncReplicaSet
。这时,如果 pod 重建完成,filteredPods
将过滤出重建的 pod,调用 updateReplicaSetStatus
更新 Replicaset
的当前状态到期望状态。
2. 小结
本文介绍了 kube-controller-manager
的运行流程,并且从一个删除 pod 的示例入手,看 kube-controller-manager
是如何控制资源状态的。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
在前端开发中,数据流是一个非常重要的概念。Vue.js作为一种流行的前端框架,采用了单向数据流的架构,旨在简化开发过程并提高应用的可维护性。本文将探讨Vue单向数据流的含义以及它的使用方法。 什么是单向数据流? 在Vue中,单向数据流是指数据的传递方向是单向的…