前言:
上一篇实践了通过Logstash同步MySQL的几张关联表到Elasticsearch中。为了实现同一种业务需求,嵌套文档在资源开销和查询速度上要优于父子文档(针对少量数据的情况)。所以以下就实践一下嵌套文档的基本使用和,以及Logstash如何同步一对多关系表到ElasticSearch的嵌套文档中。
RESTful模拟:
以下以博客内容和博客评论为例,从映射创建,到增,删,改,查,聚合演示嵌套文档的使用方法,索引名 “blog_new”。
1. 创建映射
PUT blog_new
{
"mappings": {
"properties": {
"title": {
"type": "text"
},
"body": {
"type": "text"
},
"tags": {
"type": "keyword"
},
"published_on": {
"type": "keyword"
},
"comments": {
"type": "nested",
"properties": {
"name": {
"type": "text"
},
"comment": {
"type": "text"
},
"age": {
"type": "short"
},
"rating": {
"type": "short"
},
"commented_on": {
"type": "text"
}
}
}
}
}
}
2. 添加
POST blog_new/blog/2
{
"title": "Hero",
"body": "Hero test body...",
"tags": ["Heros", "happy"],
"published_on": "6 Oct 2018",
"comments": [
{
"name": "steve",
"age": 24,
"rating": 18,
"comment": "Nice article..",
"commented_on": "3 Nov 2018"
}
]
}
3. 删除
POST blog_new/blog/1/_update
{
"script": {
"lang": "painless",
"source": "ctx._source.comments.removeIf(it -> it.name == 'John');"
}
}
4. 修改
POST blog_new/blog/2/_update
{
"script": {
"source": "for(e in ctx._source.comments){if (e.name == 'steve') {e.age = 25; e.comment= 'very very good article...';}}"
}
}
5. 查询
GET /blog_new/_search?pretty
{
"query": {
"bool": {
"must": [
{
"nested": {
"path": "comments",
"query": {
"bool": {
"must": [
{
"match": {
"comments.name": "William"
}
},
{
"match": {
"comments.age": 34
}
}
]
}
}
}
}
]
}
}
}
6. 聚合
GET blog_new/_search
{
"size": 0,
"aggs": {
"comm_aggs": {
"nested": {
"path": "comments"
},
"aggs": {
"min_age": {
"min": {
"field": "comments.age"
}
}
}
}
}
}
Logstash同步:
同步到ES的嵌套文档和前面的父子文档就有点不一样了,这里只需要一个jdbc。合并主要是通过关联查询出结果,然后聚合导入到ElasticSearch中。以下还是以博客和评论为例,创建索引映射和其他MySQL表之类的就省略,直接看运行命令。
1. 创建嵌套文档索引和映射
可以用上面RESTful方式的映射创建进行修改,主要的是嵌套的类型是nested,执行配置前运行SQL查询效果如下。
2. 配置同步代码
input {
stdin {}
jdbc {
jdbc_driver_library => "E:/2setsoft/1dev/logstash-7.8.0/mysqletc/mysql-connector-java-5.1.7-bin.jar"
jdbc_driver_class => "com.mysql.jdbc.Driver"
jdbc_connection_string => "jdbc:mysql://127.0.0.1:3306/community?characterEncoding=UTF-8&useSSL=false"
jdbc_user => root
jdbc_password => "root"
schedule => "*/1 * * * *"
statement => "SELECT community.id AS community_id, community.content, community.location, community.images, comment.content AS comment_content , comment.id AS comment_id FROM yiqi_comment comment LEFT JOIN yiqi_community community ON community.id = comment.community_id"
}
}
filter {
aggregate {
task_id => "%{community_id}"
code => "
map['id'] = event.get('community_id')
map['content'] = event.get('content')
map['location'] = event.get('location')
map['images'] = event.get('images')
map['comment_list'] ||=[]
map['comment'] ||=[]
if (event.get('comment_id') != nil)
if !(map['comment_list'].include? event.get('comment_id'))
map['comment_list'] event.get('comment_id'),
'content' => event.get('comment_content')
}
end
end
event.cancel()
"
push_previous_map_as_event => true
timeout => 5
}
json {
source => "message"
remove_field => ["message"]
#remove_field => ["message", "type", "@timestamp", "@version"]
}
mutate {
#将不需要的JSON字段过滤,且不会被存入 ES 中
remove_field => ["tags", "@timestamp", "@version"]
}
}
output {
stdout {
#codec => json_lines
}
elasticsearch {
hosts => ["127.0.0.1:9200"]
index => "test_nested_community_content"
document_id => "%{id}"
}
}
3. 运行命令开始同步
binlogstash -f mysqlmysql.conf
4. 查询
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
内容简介 openGauss资源池化是openGauss推出的一种新型的集群架构,通过DMS和DSS组件,实现集群中多个节点的底层存储数据共享和节点间的内存实时共享,达到节省底层存储资源以及集群内部支持一写多读且可以实时一致性读的目的。本文主要介绍开发者如何搭…