全文链接:http://tecdat.cn/?p=22160
最近我们被客户要求撰写关于分位数随机森林(QRF)回归树的研究报告,包括一些图形和统计输出。
这个例子展示了如何使用分位数随机林来检测异常值
分位数随机林可以检测到与给定X的Y的条件分布有关的异常值。
离群值是一些观测值,它的位置离数据集中的大多数其他观测值足够远,可以认为是异常的。离群观测的原因包括固有的变异性或测量误差。异常值显著影响估计和推断,因此检测它们决定是删除还是稳健分析非常重要。
为了演示异常值检测,此示例:
从具有异方差性的非线性模型生成数据,并模拟一些异常值。
生长回归树的分位数随机森林。
估计预测变量范围内的条件四分位(Q1、Q2和Q3)和_四分位_距(IQR)。
将观测值与边界进行比较,边界为F1=Q1−1.5IQR和F2=Q3+1.5IQR。任何小于F1或大于F2的观测值都是异常值。
生成数据
从模型中生成500个观测值
在0 ~ 4π之间均匀分布,εt约为N(0,t+0.01)。将数据存储在表中。
rng('default'); % 为保证重复性
randsample(linspace(0,4*pi,1e6),n,true)';
epsilon = randn(n,1).*sqrt((t+0.01));
将五个观测值沿随机垂直方向移动90%的值。
numOut = 5;
Tbl.y(idx) + randsample([-1 1],numOut,true)'.*(0.9*Tbl.y(idx));
绘制数据的散点图并识别异常值。
plot(Tbl.t,Tbl.y,'.');
plot(Tbl.t(idx),Tbl.y(idx),'*');
title('数据散点图');
legend('数据','模拟异常值','Location','NorthWest');
点击标题查阅往期内容
[](http://mp.weixin.qq.com/s?__biz=MzU4NTA1MDk4MA==&mid=2247497785&idx=1&sn=59b0cb4c46b89db252f3dd634e773670&chksm=fd92c632cae54f2424ed89f878cd2e7f83dd7eb7be83fa70edac64d2196ec21350139caac48f&scene=21#wechat_redirect)R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测
左右滑动查看更多
01
02
03
04
生成分位数随机森林
生成200棵回归树。
Tree(200,'y','regression');
返回是一个TreeBagger集合。
预测条件四分位数和四分位数区间
使用分位数回归,估计t范围内50个等距值的条件四分位数。
linspace(0,4*pi,50)';
quantile(pred,'Quantile');
`quartile是一个500 × 3的条件四分位数矩阵。行对应于t中的观测值,列对应于概率。
在数据的散点图上,绘制条件均值和中值因变量。`
plot(pred,[quartiles(:,2) meanY]);
legend('数据','模拟的离群值','中位数因变量','平均因变量',...
虽然条件均值和中位数曲线很接近,但模拟的离群值会影响均值曲线。
计算条件IQR、F1和F2。
iqr = quartiles(:,3) - quartiles(:,1);
f1 = quartiles(:,1) - k*iqr;
k=1.5意味着所有小于f1或大于f2的观测值都被认为是离群值,但这一阈值并不能与极端离群值相区分。k为3时,可确定极端离群值。
将观测结果与边界进行比较
绘制观察图和边界。
plot(Tbl.t,Tbl.y,'.');
legend('数据','模拟的离群值','F_1','F_2');
title('使用分位数回归的离群值检测')
所有模拟的异常值都在[F1,F2]之外,一些观测值也在这个区间之外。
本文摘选 《 matlab使用分位数随机森林(QRF)回归树检测异常值 》 ,点击“阅读原文”获取全文完整资料。
点击标题查阅往期内容
逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化|数据分享
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
R语言基于树的方法:决策树,随机森林,Bagging,增强树
R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测
spss modeler用决策树神经网络预测ST的股票
R语言中使用线性模型、回归决策树自动组合特征因子水平
R语言中自编基尼系数的CART回归决策树的实现
R语言用rle,svm和rpart决策树进行时间序列预测
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
python中使用scikit-learn和pandas决策树进行iris鸢尾花数据分类建模和交叉验证
R语言里的非线性模型:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析
R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类
R语言ISLR工资数据进行多项式回归和样条回归分析
R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型
R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量
R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
如何用R语言在机器学习中建立集成模型?
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测在python 深度学习Keras中计算神经网络集成模型R语言ARIMA集成模型预测时间序列分析R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者
R语言基于树的方法:决策树,随机森林,Bagging,增强树
R语言基于Bootstrap的线性回归预测置信区间估计方法
R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线
matlab使用分位数随机森林(QRF)回归树检测异常值
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
在平时打web或者打内网时难免遇到一种情况,就是需要以当前用户身份,通过远程桌面的形式操控主机。已达到退杀软、操控聊天软件以及其他需要交互式的操作,这个时候就需要借助远程桌面软件来操控目标机。 NO.1 Todesk 根据目标软件安装情况有以下两种利用方法 1…