本文是OFDM系统的不同QAM调制阶数的误码率与误比特率仿真,仅考虑在高斯白噪声信道下的情景,着重分析不同信噪比下的误码(符号)率性能曲线,不关心具体的调制与解调方案,仿真结果与理论的误码率曲线进行了对比。
考虑一个简单的OFDM系统,每个频域子载波承载一个QAM调制符号,在经过不同信噪比白噪声信道之后,每个QAM调制符号的解调性能如何,每个符号对应的比特解码性能如何?理论的误码性能如何?
-
代码
clc;close all;clear %% Seting parameters EbN0_list = 0:1:10; Q_order_list = 2:2:10; loopNumber = 10; fprintf('Qmt EbN0 t t EsN0 t t SNR_Cal t t ser tt ser_theoryttt bertt nloop tt n'); for iQorder = 1 : length(Q_order_list) for iEbN0 = 1 : length(EbN0_list) %% Frame structure N_Frame = 10; N_Symbol = 14; N_RB = 106; N_SC_perRB = 12; N_SC = N_RB * N_SC_perRB; N_Ant = 1; N_fft_order = floor(log2(N_RB * N_SC_perRB)); N_fft = 2^(N_fft_order+1); N_cp = N_fft/8; EbN0 = EbN0_list(iEbN0); %% Modulation Q_order = Q_order_list(iQorder); Qm = 2^Q_order; N_bit = N_Frame * N_Symbol * N_RB * N_SC_perRB * Q_order; %% Noise Calculation SNR = EbN0 + 10 * log10(Q_order); %% Loop for iloop = 1 :loopNumber data_bit_in = randi([0 1], 1, N_bit); dataSymbolsIn = bi2de(reshape(data_bit_in, Q_order, N_bit/Q_order).', 'left-msb'); dataMod = qammod(dataSymbolsIn, Qm,'UnitAveragePower', true); %% Show Constellation %scatterplotme(dataMod) %% Resource Mapping RE_Grid = zeros(N_RB * N_SC_perRB,N_Symbol * N_Frame); dataMod_tmp = reshape(dataMod,N_RB * N_SC_perRB,[]); %only data Power_Scale = 1; RE_Grid_all = Power_Scale * dataMod_tmp; %% IFFT add CP frame_mod_shift = ifftshift(RE_Grid_all); ifft_data = ifft(frame_mod_shift,N_fft)*sqrt(N_fft); %ifft_data = ifft(frame_mod_shift)*sqrt(1272); Tx_cd = [ifft_data(N_fft-N_cp+1:end,:);ifft_data]; time_signal = reshape(Tx_cd,[],1); %% Channel power_RE = sum(sum(abs(RE_Grid_all).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; power_tp = sum(sum(abs(ifft_data).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; %IFFT zero padding averages the true RE Power N0 = power_RE .* 10.^(-SNR / 10); white_noise_starand = 1/sqrt(2)*(randn(size(time_signal)) + 1j * randn(size(time_signal))); TransmittedSignal = time_signal + sqrt(N0) * white_noise_starand; %% Receive and Sys ReceivedSignal = TransmittedSignal; %% FFT and Frame frame_recieved_parallel = reshape(ReceivedSignal, N_fft + N_cp, []); frame_Received = frame_recieved_parallel(N_cp + 1:end,:); frame_Grid_Received = fft(frame_Received,N_fft) / sqrt(N_fft); RE_Grid_all_Received = fftshift(frame_Grid_Received(1 : N_SC,:)); %% Demodulation RE_PreDeMod = reshape(RE_Grid_all_Received,[],1); dataSymbolsOut = qamdemod(RE_PreDeMod, Qm,'UnitAveragePower', true); data_bit_out = reshape((de2bi(dataSymbolsOut, 'left-msb')).',1,[]); power_RE_receid = sum(sum(abs(RE_PreDeMod).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; snr_all(iQorder,iEbN0,iloop) = 10*log10(power_RE/(power_RE_receid - power_RE)); %% Result: Ser an服务器托管网d Ber %Ser sym_err = length(find(dataSymbolsOut - dataSymbolsIn)); ser_all(iQorder,iEbN0,iloop) = sym_err / length(dataSymbolsOut); %Ber bit_error = sum(abs(data_bit_out - data_bit_in)); ber_all(iQorder,iEbN0,iloop) = bit_error / length(data_bit_out); end sers = mean(ser_all,3); snrs = mean(snr_all,3); bers = mean(ber_all,3); sers_theory(iQorder,iEbN0) = QAM_SER_Theory(Qm,EbN0); fprintf('%dQAMt%ft %ft %ft %ett%ett%ett%dtn', Qm, EbN0, SNR,snrs(iQorder,iEbN0),sers(iQorder,iEbN0),sers_theory(iQorder,iEbN0),bers(iQorder,iEbN0),loopNumber); end end figure(1) semilogy(EbN0_list, bers(1,:), 'k--+'); hold on grid on semilogy(EbN0_list, bers(2,:), 'r--o'); semilogy(EbN0_list, bers(3,:), 'b--x'); semilogy(EbN0_list, bers(4,:), 'g--s'); xlabel('Eb/N0,dB'); ylabel('BER'); title('BER VERS SNR'); legend('QPSK','16QAM','256QAM','1024QAM'); figure(2) semilogy(EbN0_list, sers(1,:), 'k--+'); hold on grid on semilogy(EbN0_list, sers_theory(1,:), 'k-'); semilogy(EbN0_list, sers(2,:), 'r--o'); semilogy(EbN0_list, sers_theory(2,:), 'r-'); semilogy(EbN0_list, sers(3,:), 'b--x'); semilogy(EbN0_list, sers_theory(3,:), 'b-'); semilogy(EbN0_list, sers(4,:), 'g--s'); semilogy(EbN0_list, sers_theory(4,:), 'g-'); xlabel('Eb/N0,dB'); ylabel('SER'); title('SER VERS SNR'); %SML = simulation, THR = theory legend('QPSK-SML','QPSK-THR','16QAM-SML','16QAM-THR','256QAM-SML','256QAM-THR','1024QAM-SML','1024QAM-THR');
计算理论误码率的函数:
function SER = QAM_SER_Theory(Qm,EbN0) %Reference https://dsplog.com/2012/01/01/symbol-error-rate-16qam-64qam-256qam/ Q_order = log2(Qm); EsN0_DB = EbN0 + 10 * log10(Q_order); EsN0 = 10.^( EsN0_DB/ 10); k = sqrt(3 / (2*(Qm - 1))); k_snr = k * sqrt(EsN0); cer = erfc(k_snr); SER = 2*(1 - 1/sqrt(Qm))*cer - (1 - 2/sqrt(Qm) + 1/Qm) * (cer.^2); % cer = erf服务器托管网c(sqrt(EsN0/2)); % SER = cer - 1/4*cer.^2; end
计算理论误比特率的函数需要参考文献,不过观察误码率与误比特率曲线,大体趋势相同,也许仅相差一个和调制阶数相关的常数(后来验证并非如此简单)。
-
仿真结果
1:SER VERS SNR(该图理论(THR)误符号率曲线和实际仿真(SML)理论误符号率曲线基本重合)
2:BER VERS SNR(未画出理论误码率曲线)
-
分析结论
本仿真中应该重点关注信噪比的换算,包括Eb/N0(每bit的信噪比)到Es/N0(每QAM符号的信噪比),频域通过IFFT到时域前后计算SNR,特别是子载波个数与IFFT的点数不相同时,如何在时域加噪声,每个时域采样点的噪声功率N0应该加多大。
-
反思
1.仅白噪声下的仿真结果,那么在多径信道下的仿真曲线如何呢?如何利用信道均衡来对抗多径带来的频率选择性衰落。
2.在调制阶数越来越高的情况下,误码率与误比特率都随之升高,那么通信中是如何通过调制阶数的升高来提升系统的吞吐量的呢?信道编码的作用。
3.如何利用多个天线MIMO技术来提高通信系统的有效性与可靠性?信道预编码与均衡。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.fwqtg.net
相关推荐: 保姆级:Windows Server 2012上安装.NET Framework 3.5
我是默,一个在CSDN分享笔记的博主。 在这里,我要推荐给大家我的专栏《Windows》。 无论你是编程小白,还是有一定基础的程序员,这个专栏都能满足你的需求。我会用最简单易懂的语言,带你走进代码的世界,让你从零开始,一步步成为编程大师。 让我们在代码的…