报告链接:http://tecdat.cn/?p=32161
原文出处:拓端数据部落公众号
本文通过建立空载率的数学模型,帮助客户来分析出租车的空载率,从而对出租车补贴政策能否提高高峰期的实载率,缓解打车难问题进行了说明。
分析思路
1.利用这么多天的数据,按照算法先算出每天的日平今年空载率,绘制成曲线
2 利用一次平滑预测模型算出这么多天的预测日平均空载率,其中的平滑常数分别带入我假设的那三种数值,求出预测和实际均方差,最后取均方差最小的那个对应的平滑常数为我们所要的。
3.利用二次平滑指数预测模型,预测4月25日至5月31日的日平均空载率,绘制成曲线(初始值取4月23日的实际日平均空载率,平滑常数为2中所要的那个)
选择南京市的三个地点:鼓楼公园,四牌楼,玄武湖公园,因为距离远近,交通状况都差不多,以4月1日到4月30日每天测量这三个地点的打车需求量,出租车总数。
数据
数据以滴滴平台获得:
分析方法
以鼓楼公园为例:
则4月1日的空载率为:
注:不考虑拼车状况,假设一辆出租车只能接一单。
以此类推,4月2日,4月3日,4月4日…4月30日空载率分别为:
利用一次平滑指数公式:
如:4月1日的预测空载率为k,则4月2日的预测空载率为
我们采用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。
二次平滑指数预测模型:公式:
求空载率
kongzailv=function(datat){
sum(as.numeric(datat[,2]))/sum(as.numeric(datat[,1]))
}
地区:鼓楼公园
for(i in 1:27){
datat=data[((i-1)*4+1):(i*4),3:4]
kongzailvdata[i]=kongzailv(datat)
设置alpha参数为0.3
alpha
参看模型参数
计算均方差值
RMSE1=mean((model$fitted-model$x)^2)
设置alpha参数为0.5
alpha
设置alpha参数为0.7
找出最小的RMSE值
min(RMSE1,RMSE2,RMSE3)
[1] 0.2712489
因此 采用alpha为0.5 , 然后使用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。
参看模型参数
预测数值
预测图像
地区:四牌楼
which.min(c(RMSE1,RMSE2,RMSE3))
## [1] 3
###从结果看出当alpaha为0.7的时候 渠道最小的RMSE值
因此 采用alpha为0.7 ,然后使用二次平滑指数预测的算法来预测短期之内,不受季节因素影响的空载率。
参看模型参数
地区:玄武湖公园
#############################找出最小的RMSE值
min(RMSE1,RMSE2,RMSE3)
## [1] 0.01964692
which.min(c(RMSE1,RMSE2,RMSE3))
## [1] 1
###从结果看出当alpaha为0.3的时候 渠道最小的RMSE值
参看模型参数
最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列
4.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
5.r语言copulas和金融时间序列案例
6.R 语言用RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
7.Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net