全文链接:http://tecdat.cn/?p=32198
原文出处:拓端数据部落公众号
多元时间序列建模一直是吸引了来自经济,金融和交通等各个领域的研究人员的主题。多元时间序列预测的一个基本假设是,其变量相互依赖。
在本文中,我们使用了专门针对客户的多元时间序列数据设计的神经网络框架,拟合单隐层神经网络,可能存在跳跃层连接。
查看数据
其中Y为因变量,时间、Y1、Y2为自变量。
读取数据
data=read.xlsx("my data.xlsx")
head(data)
建立神经网络模型
建立单隐藏层神经网络,size
参数可以确定隐藏层的节点数量,maxit
控制迭代次数。
require(nnet)
## Loading required package: nnet
#设置因变量
y=data$Y
# y
绘制拟合数据
预测未来的20年数据
foreY1=0
foreY1=predict(mod2,data.frame(T=foreyear) )
预测新变量
datanew= data.frame(T=foreyear,Y1=foreY1,Y2=foreY2)
绘制未来20年的时间序列
pre=ts(pre,start = c(2015),f=1)
###############################绘制未来20年的时间序列
plot(pre, axes = F,col=2,type="l")
axis(side = 1 ,col=10)
最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.Python用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列
4.Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
5.r语言copulas和金融时间序列案例
6.R 语言用RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
7.Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net