trans_beta class:利用trans_beta类可以变换和绘制beta分集的距离矩阵。该类中涉及到beta多样性的分析主要包括排序、群距、聚类和方差分析。我们首先使用PCoA显示排序。
> dataset$cal_betadiv() The result is stored in object$beta_diversity ... > t1 t1$cal_ordination(ordination = "PCoA") The ordination result is stored in object$res_ordination ... > tmp t2 t2$cal_diff(group = "Group", method = "anova") The result is stored in object$res_diff ... Warning message: 程辑包‘agricolae’是用R版本4.3.3 来建造的 #这里需要安装agricolae包,直接install就行。 > t2 trans_env object: Env table have 2 variables: PCo1,PCo2
> p1
#然后我们绘制并比较群距。
> t1$cal_group_distance()
> t1$plot_group_distance(distance_pair_stat = TRUE)
#这里应该会有差异比较的,但是却没有。示例如下,不知道有什么问题,等到有需求我会解决这个问题。
#计算和绘制组之间的样本距离
> t1$cal_group_distance(within_group = FALSE)
> t1$plot_group_distance(distance_pair_stat = TRUE)
# 聚类图也是一种常用的方法。
> t1$plot_clustering(group = “Group”, replace_name = c(“Saline”, “Type”))
#perMANOVA常用于组间距离的差异检验。
> t1$cal_manova(cal_manova_all = TRUE) The result is stored in object$res_manova ... > t1$res_manova Permutation test for adonis under reduced model Terms added sequentially (first to last) Permutation: free Number of permutations: 999 adonis2(formula = use_formula, data = metadata, cal_manova_all = TRUE) Df SumOfSqs R2 F Pr(>F) Group 2 6.1207 0.19553 10.573 0.001 *** Residual 87 25.1822 0.80447 Total 89 31.3029 1.00000 --- Signif. cod服务器托管网es: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## manova表示每一对组
> t1$cal_manova(cal_manova_paired = TRUE) The result is stored in object$res_manova ... > t1$res_manova Permutation test for adonis under reduced model Terms added sequentially (first to last) Permutation: free Number of permutations: 999 adonis2(formula = use_formula, data = metadata, cal_manova_paired = TRUE) Df SumOfSqs R2 F Pr(>F) Group 2 6.1207 0.19553 10.573 0.001 *** Residual 87 25.1822 0.80447 Total 89 31.3029 1.00000 服务器托管网 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# manova用于指定组集:这里是“group + Type” > t1$cal_manova(cal_manova_set = "Group + Type") The result is stored in object$res_manova ... > t1$res_manova Permutation test for adonis under reduced model Terms added sequentially (first to last) Permutation: free Number of permutations: 999 adonis2(formula = use_formula, data = metadata, cal_manova_set = "Group + Type") Df SumOfSqs R2 F Pr(>F) Group 2 6.1207 0.19553 10.573 0.001 *** Residual 87 25.1822 0.80447 Total 89 31.3029 1.00000 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
这个包的改动有些大,以前的代码不能直接跑了。我发觉,学习这个包还是要基于需求啊,否则会很快忘掉。以前我使用vegan包分析+ggplot2包做PCOA分析,等把这个包分享完了,我会再分享其它的R语言。
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
相关推荐: 软件杯 垃圾邮件(短信)分类算法实现 机器学习 深度学习
文章目录 0 前言 2 垃圾短信/邮件 分类算法 原理 2.1 常用的分类器 – 贝叶斯分类器 3 数据集介绍 4 数据预处理 5 特征提取 6 训练分类器 7 综合测试结果 8 其他模型方法 9 最后 0 前言 优质竞赛项目系列,今天要分享的是 垃圾邮件(短…