Spark 为什么比 MapReduce 快总结
首先澄清几个误区:
1)两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以说网上所说的 Spark 是基于内存计算所以快,显然是错误的。
2)DAG 计算模型减少的是磁盘 1/0 次数(相比于 MapReduce 计算模型而言),而不是shuffle次数,因为 shuffle 是根据数据重组的数次而定,所以 shufle 次数不能减少。
所以总结 Spark 比MapReduce 快的原因有以下几点:
1)DAG 相比Hadoop 的MapReduce 在大多数情况下可以减少磁盘1/0次数。因为 MapReduce 计算模型只能包含一个Map 和一个Reduce,所以 Reduce 完后必须进行落盘,而DAG 可以连续 shuffle 的,也就是说一个 DAG 可以完成好几个MapReduce,所以DAG 只需要在最后一次redu服务器托管网ce 落盘,这就比mapreduce少了,总shuffle 次数越多,减少的落盘次数越多。
2)Spark shuffle 的优化。MapReduce 在 Shuffle 时默认进行排序。Spark 在Shuffle 时则只有部分场景才需要排序 (bypass 机制不需要排序)。排序是非常耗时的,这样就可以加快 shuffle 速度。。
3)Spark 支持将需要反复用到的数据进行缓存。所以对于下次再次使用此 RDD时,不用再次计算,而是直接从缓存中获取,因此可以减少数据加口载耗时,所以更适合需要迭代计算的机器学习算法。
4)任务级别井行度上的不同。MapReduce 采用了多进程模型,而 Spark 采用了多线程模型。多进程模型的好处是便于细粒度控制每个任务占用的资源,但每次任务的启动都会消耗一定的启动时间,即MapReduce 的Map Task和Reduce Task是进程级别的,都是 jvm 进程,每次启动都需要重新申请资源,消耗了不必要的时间。而 Spark Task 则是服务器托管网基于线程模型的,通过复用线程池中的线程来减少启动关闭 task 所需要的开销。(多线程模型也有缺点,由于同节点上所有任务运行在一个进程中,因此,会出现严重的资源争用,难以细粒度控制每个任务占用资源)
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
信息技术高速,企业面临着日益复杂的IT运维挑战。为了有效管理和监控企业的IT基础设施,众安科技提供了一套强大的统一运维监控平台解决方案。本文将详细介绍众安科技如何助力企业建设统一运维监控平台的重要性和具体实践。 一、统一运维监控平台的重要性 统一运维监控平台是…