什么是JobSystem
并行编程
在游戏开发过程中我们经常会遇到要处理大量数据计算的需求,因此为了充分发挥硬件的多核性能,我们会需要用到并行编程,多线程编程也是并行编程的一种。
线程是在进程内的,是共享进程内存的执行流,线程上下文切换的开销是相当高的,大概有2000的CPU Circle,同时会导致缓存失效,导致万级别的CPU Circle,Job System的设计使用了线程池,一开始先将大量的计算任务分配下去尽量减少线程的执行流被打断,也降低了一些thread的切换开销。
Unreal Unity大部分都是这种模型,分配了一些work thread 然后其他的线程往这个线程塞Task,相比fixed thread模式性能好一些,多出了Task的概念,Unity里称这个为Job。
建议看看Games104并行架构部分
Unity JobSystem
通常Unity在一个线程上执行代码,该线程默认在程序开始时运行,称为主线程。我们在主线程使用JobSystem的API,去给worker线程下发任务,就是使用多线程。
通常Unity JobSystem会和Burst编译器一起使用,Burst会把IL变成使用LLVM优化的CPU代码,执行效率可以说大幅提升,但是使用Burst时候debug会变得困难,会缺少一些报错的堆栈,此时关闭burst可以看到一些堆栈,更方便debug。
虽然并行编程有着种种的技巧,比如,线程之间沟通交流数据有需要加锁、原子操作等等的数据交换等操作。但是Unity为了让我们更容易的编写多线程代码,
通过一些规则的制定,规避了一些复杂行为,同时也限制了一些功能,必要时这些功能也可以通过添加attribute、或者使用指针的方式来打破一些规则。
规定包括但不限于:
- 不允许访问静态变量
- 不允许在Job里调度子Job
- 只能向Job里传递值类型,并且是通过拷贝的方式从主线程将数据传输进Job,当Job运行结束数据会拷贝回主线程,我们可以在主线程的job对象访问Job的执行结果。
- 不允许在Native容器里添加托管类型
- 不允许使用指针
- 不允许多个Job同时写入同一个地方
- 不允许在Job里分配额外内存
可以查看 官方文档。
应用场景
基本上所有需要处理数据计算的场景都可以使用,我们可以用它做大量的游戏逻辑的计算,
我们也可以用它来做一些编辑器下的工具,可以达到加速的效果。
细节
接口
unity官方提供了一系列的接口,写一个Struct实现接口便可以执行多线程代码,提供的接口包括:
- IJob:一个线程
- IJobParallelFor:多线程,使用时传入一个数组,根据数组长度会划分出任务数量,每个任务的索引就是数组元素的索引
- IJobParallelForTransform:并行访问Transform组件的,这是unity自己实现的比较特殊的读写Transform信息的Job,实测下来用起来貌似worker还是一个在动,但是经过Burst编译后快不少。
- IJobFor:几乎没用
IJobParallelFor是最常用的,对数据源中的每一项都调用一次 Execute
方法。Execute
方法中有一个整数参数。该索引用于访问和操作作业实现中的数据源的单个元素。
容器
Job使用的数据都需要使用Unity提供的Native容器,我们在主线程将要计算的数据装进NativeContainer里然后再传进Job。
主要会使用的容器就是NativeArray,其实就是一个原生的数组类型,其他的容器这里暂时不提
这些容器还要指定分配器,分配器包括
-
Allocator.Temp
: 最快的配置。将其用于生命周期为一帧或更少的分配。从主线程传数据给Job时,不能使用Temp分配器。 -
Allocator.TempJob
: 分配比 慢Temp
但比 快Persistent
。在四帧的生命周期内使用它进行线程安全分配。 -
Allocator.Persistent
: 最慢的分配,但只要你需要它就可以持续,如果有必要,可以贯穿应用程序的整个生命周期。它是直接调用malloc. 较长的作业可以使用此 NativeContainer 分配类型。
容器在实现Job的Struct里可以打标记,包括ReadOnly、WriteOnly,一方面可以提升性能,另一方面有时候会有读写冲突的情况,此时应该尽量多标记ReadOnly,避免一些数据冲突。
创建 使用
官方文档已经说的很好。
https://docs.unity3d.com/Manual/JobSystemCreatingJobs.html
对于ParallelFor的Schedule多了一些参数,innerloopBatchCount这个参数可以留意一下,可以理解为一个线程次性拿走多少任务。
Job之间互相依赖
https://docs.unity3d.com/Manual/JobSystemJobDependencies.html
其实执行了一个Job之后,在主线再执行另一个Job也不会性能差很多,并且易于debug,可以断点查看多个阶段执行过程中Job的数据情况,但是追求完美还是可以把依赖填上。
性能测试比较
笔者曾经做过简单的使用Job和不用Job的对比,通过打上Unity Profiler的标记,可以方便的在图表里查看运行开销。
Profiler.BeginSample("Your Target Profiler Name");
// your code
Profiler.EndSample();
IJob
using System.Collections;
using System.Collections.Generic;
using Unity.Collections;
using Unity.Jobs;
using UnityEngine;
using Unity.Burst;
[BurstCompile]
public class JobTest : MonoBehaviour
{
public bool useJob;
// Update is called once per frame
void Update()
{
float startTime = Time.realtimeSinceStartup;
if (useJob)
{
NativeArray result = new NativeArray(1, Allocator.TempJob);//four frame allocate
MyJobSystem0 job0 = new MyJobSystem0();
job0.a = 0;
job0.b = 1;
job0.result = result;
JobHandle handle = job0.Schedule();
handle.Complete();
result.Dispose();
Debug.Log(("Use Job:"+ (Time.realtimeSinceStartup - startTime) * 1000f) + "ms");
}
else
{
var index = 0;
for(int i = 0; i result;
public void Execute()
{
var index = 0;
for(int i = 0; i
使用IJob执行一项复杂的工作,没有使用job跑了2-4ms,使用job也是跑了2-4 ms,但是使用了job+burst,这个for循环的速度就变得只有0.2-0.8 ms了,burst对此优化挺大的。
IJobParallelFor
using System;
using System.Collections;
using System.Collections.Generic;
using Unity.Collections;
using Unity.Jobs;
using UnityEngine;
public class JobForTest : MonoBehaviour
{
public bool useJob;
public int dataCount;
private NativeArray a;
private NativeArray b;
private NativeArray result;
private List noJobA;
private List noJobB;
private List noJobResult;
// Update is called once per frame
private void Start()
{
a = new NativeArray(dataCount, Allocator.Persistent);
b = new NativeArray(dataCount, Allocator.Persistent);
result = new NativeArray(dataCount, Allocator.Persistent);
noJobA = new List();
noJobB = new List();
noJobResult = new List();
for (int i = 0; i a;
[ReadOnly]
public NativeArray b;
public NativeArray result;
public void Execute(int i)
{
result[i] = a[i] + b[i];
}
}
普通for寻找两个list,遍历list元素然后相加,数据量10万,每一个批次这里是处理1个execute, 不开job 2.48ms,开job 1.34ms,job开了burst就0.28ms。
IJobParalForTransform
using Unity.Burst;
using Unity.Collections;
using Unity.Jobs;
using Unity.Mathematics;
using UnityEngine;
using UnityEngine.Jobs;
public class TransformJobs : MonoBehaviour
{
public bool useJob;
public int dataCount = 100;
//public int batchCount;
// 用于存储transform的NativeArray
private TransformAccessArray m_TransformsAccessArray;
private NativeArray m_Velocities;
private PositionUpdateJob m_Job;
private JobHandle m_PositionJobHandle;
private GameObject[] sphereGameObjects;
//[BurstCompile]
struct PositionUpdateJob : IJobParallelForTransform
{
// 给每个物体设置一个速度
[ReadOnly]
public NativeArray velocity;
public float deltaTime;
// 实现IJobParallelForTransform的结构体中Execute方法第二个参数可以获取到Transform
public void Execute(int i, TransformAccess transform)
{
transform.position += velocity[i] * deltaTime;
}
}
void Start()
{
m_Velocities = new NativeArray(dataCount, Allocator.Persistent);
// 用代码生成一个球体,作为复制的模板
var sphere = GameObject.CreatePrimitive(PrimitiveType.Sphere);
// 关闭阴影
var renderer = sphere.GetComponent();
renderer.shadowCastingMode = UnityEngine.Rendering.ShadowCastingMode.Off;
renderer.receiveShadows = false;
// 关闭碰撞体
var collider = sphere.GetComponent();
collider.enabled = false;
// 保存transform的数组,用于生成transform的Native Array
var transforms = new Transform[dataCount];
sphereGameObjects = new GameObject[dataCount];
int row = (int)Mathf.Sqrt(dataCount);
// 生成1W个球
for (int i = 0; i
100+vec3,不用job 0.02ms,用job +burst 0.02ms
1600+vec3,不用job 0.31ms,用job 0.07ms +burst 0.04ms
1万+vec3,不用job 2.23ms,用job 0.35ms + burst 0.12ms
1万+float3,不用job 2.55ms,用job 0.4ms
100万+float3,不用job 199ms ,用job 40ms + burst 31ms
100万+vec3,不用job 189ms ,用job 35ms + burst 31ms
高级技巧
使用特定的数学库中的实现
unity特定的数学库中的数据类型可以获取simd优化,比如vector3就可以换成float3,但是缺少的数学库,就要自己解决了,所以我一般就vector3。
在合适的时机Schedule和Complete
拥有作业所需的数据后就立即在作业上调用 Schedule
,并仅在需要结果时才开始在作业上调用 Complete
。最好是调度当前不与正在运行的任何其他作业竞争的、不需要等待的作业。例如,如果在一帧结束和下一帧开始之间的一段时间没有作业正在运行,并且可以接受一帧延迟,则可以在一帧结束时调度作业,并在下一帧中使用其结果。另一方面,如果游戏占满了与其他作业的转换期,但在帧中的其他位置存在大量未充分利用的时段,那么在这个时段调度作业会更加有效。
在单线程里运行JobSystem
IJobParallelForExtensions可以调用Run方法,会将所有的Job放到一个Thread里执行,之前我们提到了Schedule的innerloopBatchCount参数,将它调到和数据源一样大,也是在一个Thread里执行,
当我们的数据量小于1000,分配线程可能都觉得费劲,用单线程的JobSystem配合Burst效果可能更好。
需要注意的是,如果我们出现了并行写入问题(多个Thread同时写一个位置),在单线程模式下是不会报错的。
使用NativeDisableUnsafePtrRestriction
打上这个标记后可以在Job里使用Unsafe代码块,使用指针
有多个好处
- 可以不需要拷贝数组就把主线程的数据塞进子线程,对数据量大,需要频繁调用的可以考虑
- 可以包装一些托管内存,比如我这里就包装了一个二维数组,每个containsTriangleIndex其实是一个int的NativeArray
如果struct里有NativeArray,这个struct放进NativeArray的时候会过不了安全检查。
我这里是在主线程维护好了这些动态的数组,然后再传进了这个结构的。
在unsafe代码块里,Native容器相关的API中有GetUnsafePtr可以获得指针。
SamplePointRayTriangleJob samplePointRayTriangleJob = new SamplePointRayTriangleJob();
samplePointRayTriangleJob.meshTriangles = jobMeshTriangles;
samplePointRayTriangleJob.randomDirs = jobRandomDirs;
samplePointRayTriangleJob.useGrid = useGrid;
samplePointRayTriangleJob.allStartPoints = startPoints;
samplePointRayTriangleJob.allTriangleBoundsJobDatas = (TriangleBoundsJobData*)triangleBoundsJobDatas.GetUnsafePtr();
NativeDisableParallelForRestriction并行写入
打上这个标记后,多个Thread同时数组的同一个地方进行写入,unity不会阻拦,但是自己也要处理好逻辑问题。
举个例子:下面这篇文章里
https://blog.csdn.net/n5/article/details/123742777
在Parallel Job里面进行光栅化三角形时,多个三角形有可能并行访问depth buffer/frame buffer的相同地方。这在多线程编程中属于race conditions,Job system内部会检测出来,会直接报错。
IndexOutOfRangeException: Index 219108 is out of restricted IJobParallelFor range [4392…4392] in ReadWriteBuffer.
ReadWriteBuffers are restricted to only read & write the element at the job index. You can use double buffering strategies to avoid race conditions due to reading & writing in parallel to the same elements from a job.
NativeDisableContainerSafetyRestriction
使用这个Attribute可以在子线程分配一块内存,比如我这里每个子线程是创建了一个数组来接受光线三角形求交,一根光线击中了多少个点,一个子任务会执行许多次光线遍历Mesh
这个主要是博主在Github上学习Unity官方的MeshApiExample项目看到的案例,有点像StaticBatch
可以查看这个链接:把整个场景的Mesh合并
DeallocateOnJobCompletion
容器在job结束之后自动释放
这个博主用的很少 基本都是主动释放
可能在用非并行Job的时候 接受外面的NativeArray后自己不想管释放之类的。
可以查看一个github上别人的案例看看:案例
自定义Native容器
https://docs.unity3d.com/Manual/job-system-custom-nativecontainer-example.html
思考
JobSystem与ComputeShader相比 优势
JobSystem主要是利用CPU来降低计算负载,在数量级上远远比不上GPU,在前面的性能测试中数据到万以上就相当吃力了。
ComputeShader是利用GPU来降低计算负载,,现在GPU Driven的技术也逐渐越来越多。
思考这两个的取舍主要应该看业务逻辑的数据流向,如果我们的数据是从CPU发起的,那么在把数据从CPU拷贝到GPU也是肯定是不如在CPU内做拷贝要快的,
如果我们的计算的数据最后是给CPU做下步计算的,如果用GPU做计算就会出现CPU等GPU的回读问题,数据若停留在GPU,那么ComputeShader自然好。
另外就是考虑两个后端的硬件特性,CPU高主频,处理复杂的逻辑,大量的循环、分支判断上比GPU要有优势,数量级上则GPU更有优势。
最后也可以考虑一下易用性问题,如果用到了很多原本在CPU里的数学库,在JobSystem里都是可以直接用的,ComputeShader的话则需要自己实现一版,不过脚手架这种东西属于见仁见智,
只要自己方便就好。
2023.3.21
flyingziming
服务器托管,北京服务器托管,服务器租用 http://www.fwqtg.net
机房租用,北京机房租用,IDC机房托管, http://www.e1idc.net